舉報

會員
清潔與可再生能源研究:太陽能熱利用
最新章節:
Appendix B
本書匯集了清潔與可再生能源研究——太陽能熱利用方向的八篇碩士研究生論文,主要內容涉及了有機朗肯循環參數優化及太陽能熱發電系統設計、太陽能冷熱電聯供系統研究、太陽能吸附制冷復合吸附劑的性能研究、多周期換熱網絡的算法研究及其與太陽能熱能的整合利用等多個具體研究課題。
- Appendix B 更新時間:2021-04-09 17:39:04
- Appendix A
- References
- 4.2 Prospect
- 4.1 Conclusion
- 4 Conclusion and Prospect
- 3.5 Chapter Conclusion
- 3.4 Case study of a Dairy Factory
- 3.3 Integration of Solar Thermal with MPHEN
- 3.2 Choosing and Modeling of the Solar Collector
- 3.1 General Introduction of Integration of Solar Thermal with MPHEN
- 3 Integration of Solar Thermal with MPHEN
- 2.5 Chapter Conclusion
- 2.4 Implementation
- 2.3 Multiperiod Extension Method
- 2.2 Single-period Method
- 2.1 Introduction of Method for SPHENS and MPHENS
- 2 Multi-period Heat Exchanger Network Model
- 1.4 Outline of the Thesis
- 1.3 Objective of Research
- 1.2 State-of-art of HEN Synthesis
- 1.1 Background
- 1 Introduction
- Notation
- Abstract
- 8 Multi-period Heat Exchanger Network Synthesis and Its Integration with Solar Thermal
- References
- Appendix
- 5.3 For Real System Construction
- 5.2 For System Model
- 5.1 For Working Fluids
- 5 Conclusion
- 4.6 Capital Calculation of Total Heat Exchanging System
- 4.5 IHE
- 4.4 Heat Exchangers in Evaporating System
- 4.3 Solar Field
- 4.2 Safe Distance
- 4.1 The System Parameters
- 4 Calculation of Solar Field and Heat Exchangers
- 3.5 Comparison between Dry Fluids and Water Steam Cycle
- 3.4 Calculation Result and Analysis
- 3.3 Operation Parameters Setting
- 3.2 IHE System Calculation Model
- 3.1 Basic System Calculation Model
- 3 Calculation for Selecting Working Fluids
- 2.2 Scheme of Different Systems
- 2.1 Working Fluids
- 2 Fluids and Systems
- 1.4 Significance of the Research
- 1.3 Research Contents of the Thesis
- 1.2 Solar Thermal Electricity(STE)
- 1.1 Energy Consumption Review
- 1 Background
- Abstract
- 7 Medium-temperature Small Power Solar Based Organic Rankine Cycle Working Fluids Selecting and System Designing
- References
- 5.2 Prospect
- 5.1 Conclusion
- 5 Conclusion and Prospect
- 4.3 Vacuumization of the System
- 4.2 The Building of the Test Rig
- 4.1 The Components of the Test Rig
- 4 The Building and the Sealing of the Test Rig
- 3.2 The Design of the Test Rig
- 3.1 The Most Commonly Used Test Rigs
- 3 The design of the Test Rig for Composite Adsorbent Adsorption Performance
- 2.4 Clapeyron Diagram
- 2.3 Adsorption Equations
- 2.2 Adsorption Theories
- 2.1 About Adsorption
- 2 Adsorption Theory and Adsorption Equation
- 1.6 Thesis Main Contents
- 1.5 Literature Review
- 1.4 General Introduction of Solar Adsorption Refrigeration
- 1.3 General Introduction of Adsorption Refrigeration
- 1.2 General Introduction of Vapor Compression Refrigeration
- 1.1 Thesis Statement and Significance of the Research
- 1 Introduction
- Notation
- Abstract
- 6 The Building of the Test Rig for Composite Adsorbent Based Solar Adsorption Refrigeration
- References
- 8 Conclusion and Prospect
- 7.4 Results of the Simulation
- 7.3 Performance Index of Hybrid Power Plant
- 7.2 Assumptions
- 7.1 Demonstration of Hybrid System
- 7 Simulation of Hybrid Solar/Coal Power Plant
- 6.2 Validation of Coal Power Unit
- 6.1 Solar Collector Model Validation
- 6 Validation of Model
- 5.4 Complete Model of Coal Power Plant
- 5.3 Model of Coal Power Unit
- 5.2 Solar Field Model
- 5.1 Introduction of Aspen Plus
- 5 Model Construction
- 4.6 Performance Analysis of Coal Power Plant
- 4.5 Principle of Regenerative Heat Exchanger
- 4.4 Steam Turbine
- 4.3 Boiler and Condenser
- 4.2 Furnace
- 4.1 Introduction
- 4 Coal Power Plant
- 3.5 Energy Balance of Solar Field
- 3.4 Heat Losses in the Solar Field
- 3.3 The Incident Angle Calculation
- 3.2 Solar Irradiation Absorption Calculation
- 3.1 Principle of Solar Power Plant
- 3 Solar Filed
- 2.5 Power Unit in Haibowan Power Plant
- 2.4 Climatological Condition in Wuhai City
- 2.3 Site Selection
- 2.2 Coal Power Plants Distribution
- 2.1 Solar Potential of China
- 2 Site Selection for the Hybrid System
- 1.4 Arrangement of the Report
- 1.3 The Development of Solar Collector Model
- 1.2 State of Arts
- 1.1 Background
- 1 Introduction
- Symbol List
- Abstract
- 5 Simulation of a Hybrid Solar/Coal Power Plant with Aspen Plus
- 參考文獻
- 5.2 展望
- 5.1 總結
- 5 總結與展望
- 4.4 本章小結
- 4.3 案例分析
- 4.2 太陽能集熱器建模
- 4.1 整合利用基本方法
- 4 多周期換熱網絡綜合與太陽能熱能的整合利用
- 3.3 本章小結
- 3.2 算例分析
- 3.1 程序實現
- 3 多周期換熱網絡綜合的程序實現與算例分析
- 2.3 本章小結
- 2.2 數學模型
- 2.1 問題描述
- 2 多期換熱網絡綜合的數學模型
- 1.3 主要研究內容
- 1.2 國內外研究現狀
- 1.1 研究背景與意義
- 1 緒論
- 摘要
- 4 多周期換熱網絡的算法研究及其與太陽能熱能的整合利用
- 參考文獻
- 6.2 展望
- 6.1 總結
- 6 總結與展望
- 5.6 本章小結
- 5.5 計算結果及分析
- 5.4 換熱器熱力學計算
- 5.3 三段換熱器的結構參數選擇與計算
- 5.2 各換熱器運行參數
- 5.1 換熱器選型
- 5 太陽能有機朗肯循環發電系統換熱器設計
- 4.8 本章小結
- 4.7 計算結果分析
- 4.6 系統評價參數計算
- 4.5 系統設計
- 4.4 參數設計
- 4.3 太陽能場性能計算原理
- 4.2 設備選型
- 4.1 計算工質選擇
- 4 太陽能有機朗肯循環發電系統設計
- 3.5 本章小結
- 3.4 有機朗肯循環與水蒸氣朗肯循環對比
- 3.3 各工質最佳效率運行參數
- 3.2 帶回熱(IHE) ORC循環
- 3.1 基本ORC循環
- 3 有機朗肯循環系統參數優化
- 2.5 本章小結
- 2.4 循環性能評價模型
- 2.3 ORC系統熱力學計算模型
- 2.2 系統建模預設參數分析
- 2.1 工質選取
- 2 有機朗肯循環系統性能計算模型
- 1.4 主要研究內容
- 1.3 有機朗肯循環研究及應用現狀
- 1.2 槽式太陽能熱發電技術
- 1.1 研究目的與意義
- 1 緒論
- 摘要
- 3 基于干工質的有機朗肯循環參數優化及太陽能熱發電系統設計
- 參考文獻
- 5.2 展望
- 5.1 總結
- 5 總結與展望
- 4.3 實驗結果與分析
- 4.2 實驗步驟
- 4.1 吸附工質對的制備
- 4 吸附劑吸附性能實驗研究
- 3.4 改進后的臺架
- 3.3 真空檢漏
- 3.2 實驗臺的組成
- 3.1 實驗臺的設計
- 3 吸附劑性能測試實驗臺的設計及搭建
- 2.5 常見的吸附性能測試裝置
- 2.4 Clapeyron圖
- 2.3 吸附方程
- 2.2 吸附理論
- 2.1 吸附現象
- 2 吸附理論基礎與常見的吸附性能測試裝置
- 1.3 主要研究內容
- 1.2 吸附制冷基礎與國內外研究現狀
- 1.1 研究背景及意義
- 1 緒論
- 摘要
- 2 基于碳納米管的太陽能吸附制冷復合吸附劑的性能研究
- 附錄
- 參考文獻
- 6.2 展望
- 6.1 總結
- 6 總結與展望
- 5.4 本章小結
- 5.3 變工況分析
- 5.2 評價指標
- 5.1 工況描述
- 5 30MW太陽能冷熱電聯供系統研究
- 4.3 本章小結
- 4.2 蒸汽雙效并聯吸收式制冷循環模型的建立
- 4.1 熱驅動制冷系統介紹
- 4 蒸汽雙效溴化鋰吸收式制冷循環
- 3.4 本章小結
- 3.3 蒸汽循環
- 3.2 燃燒部分
- 3.1 電站介紹
- 3 30MW燃煤發電系統研究
- 2.4 本章小結
- 2.3 太陽能集熱場模型建立及變工況討論
- 2.2 太陽能集熱場介紹
- 2.1 太陽能資源介紹及選址
- 2 太陽能集熱系統研究
- 1.4 主要研究內容
- 1.3 模擬軟件介紹
- 1.2 研究應用現狀及發展趨勢
- 1.1 研究背景與意義
- 1 緒論
- 摘要
- 1 30MW太陽能冷熱電聯供系統研究
- Preface
- 前言
- 版權信息
- 封面
- 封面
- 版權信息
- 前言
- Preface
- 1 30MW太陽能冷熱電聯供系統研究
- 摘要
- 1 緒論
- 1.1 研究背景與意義
- 1.2 研究應用現狀及發展趨勢
- 1.3 模擬軟件介紹
- 1.4 主要研究內容
- 2 太陽能集熱系統研究
- 2.1 太陽能資源介紹及選址
- 2.2 太陽能集熱場介紹
- 2.3 太陽能集熱場模型建立及變工況討論
- 2.4 本章小結
- 3 30MW燃煤發電系統研究
- 3.1 電站介紹
- 3.2 燃燒部分
- 3.3 蒸汽循環
- 3.4 本章小結
- 4 蒸汽雙效溴化鋰吸收式制冷循環
- 4.1 熱驅動制冷系統介紹
- 4.2 蒸汽雙效并聯吸收式制冷循環模型的建立
- 4.3 本章小結
- 5 30MW太陽能冷熱電聯供系統研究
- 5.1 工況描述
- 5.2 評價指標
- 5.3 變工況分析
- 5.4 本章小結
- 6 總結與展望
- 6.1 總結
- 6.2 展望
- 參考文獻
- 附錄
- 2 基于碳納米管的太陽能吸附制冷復合吸附劑的性能研究
- 摘要
- 1 緒論
- 1.1 研究背景及意義
- 1.2 吸附制冷基礎與國內外研究現狀
- 1.3 主要研究內容
- 2 吸附理論基礎與常見的吸附性能測試裝置
- 2.1 吸附現象
- 2.2 吸附理論
- 2.3 吸附方程
- 2.4 Clapeyron圖
- 2.5 常見的吸附性能測試裝置
- 3 吸附劑性能測試實驗臺的設計及搭建
- 3.1 實驗臺的設計
- 3.2 實驗臺的組成
- 3.3 真空檢漏
- 3.4 改進后的臺架
- 4 吸附劑吸附性能實驗研究
- 4.1 吸附工質對的制備
- 4.2 實驗步驟
- 4.3 實驗結果與分析
- 5 總結與展望
- 5.1 總結
- 5.2 展望
- 參考文獻
- 3 基于干工質的有機朗肯循環參數優化及太陽能熱發電系統設計
- 摘要
- 1 緒論
- 1.1 研究目的與意義
- 1.2 槽式太陽能熱發電技術
- 1.3 有機朗肯循環研究及應用現狀
- 1.4 主要研究內容
- 2 有機朗肯循環系統性能計算模型
- 2.1 工質選取
- 2.2 系統建模預設參數分析
- 2.3 ORC系統熱力學計算模型
- 2.4 循環性能評價模型
- 2.5 本章小結
- 3 有機朗肯循環系統參數優化
- 3.1 基本ORC循環
- 3.2 帶回熱(IHE) ORC循環
- 3.3 各工質最佳效率運行參數
- 3.4 有機朗肯循環與水蒸氣朗肯循環對比
- 3.5 本章小結
- 4 太陽能有機朗肯循環發電系統設計
- 4.1 計算工質選擇
- 4.2 設備選型
- 4.3 太陽能場性能計算原理
- 4.4 參數設計
- 4.5 系統設計
- 4.6 系統評價參數計算
- 4.7 計算結果分析
- 4.8 本章小結
- 5 太陽能有機朗肯循環發電系統換熱器設計
- 5.1 換熱器選型
- 5.2 各換熱器運行參數
- 5.3 三段換熱器的結構參數選擇與計算
- 5.4 換熱器熱力學計算
- 5.5 計算結果及分析
- 5.6 本章小結
- 6 總結與展望
- 6.1 總結
- 6.2 展望
- 參考文獻
- 4 多周期換熱網絡的算法研究及其與太陽能熱能的整合利用
- 摘要
- 1 緒論
- 1.1 研究背景與意義
- 1.2 國內外研究現狀
- 1.3 主要研究內容
- 2 多期換熱網絡綜合的數學模型
- 2.1 問題描述
- 2.2 數學模型
- 2.3 本章小結
- 3 多周期換熱網絡綜合的程序實現與算例分析
- 3.1 程序實現
- 3.2 算例分析
- 3.3 本章小結
- 4 多周期換熱網絡綜合與太陽能熱能的整合利用
- 4.1 整合利用基本方法
- 4.2 太陽能集熱器建模
- 4.3 案例分析
- 4.4 本章小結
- 5 總結與展望
- 5.1 總結
- 5.2 展望
- 參考文獻
- 5 Simulation of a Hybrid Solar/Coal Power Plant with Aspen Plus
- Abstract
- Symbol List
- 1 Introduction
- 1.1 Background
- 1.2 State of Arts
- 1.3 The Development of Solar Collector Model
- 1.4 Arrangement of the Report
- 2 Site Selection for the Hybrid System
- 2.1 Solar Potential of China
- 2.2 Coal Power Plants Distribution
- 2.3 Site Selection
- 2.4 Climatological Condition in Wuhai City
- 2.5 Power Unit in Haibowan Power Plant
- 3 Solar Filed
- 3.1 Principle of Solar Power Plant
- 3.2 Solar Irradiation Absorption Calculation
- 3.3 The Incident Angle Calculation
- 3.4 Heat Losses in the Solar Field
- 3.5 Energy Balance of Solar Field
- 4 Coal Power Plant
- 4.1 Introduction
- 4.2 Furnace
- 4.3 Boiler and Condenser
- 4.4 Steam Turbine
- 4.5 Principle of Regenerative Heat Exchanger
- 4.6 Performance Analysis of Coal Power Plant
- 5 Model Construction
- 5.1 Introduction of Aspen Plus
- 5.2 Solar Field Model
- 5.3 Model of Coal Power Unit
- 5.4 Complete Model of Coal Power Plant
- 6 Validation of Model
- 6.1 Solar Collector Model Validation
- 6.2 Validation of Coal Power Unit
- 7 Simulation of Hybrid Solar/Coal Power Plant
- 7.1 Demonstration of Hybrid System
- 7.2 Assumptions
- 7.3 Performance Index of Hybrid Power Plant
- 7.4 Results of the Simulation
- 8 Conclusion and Prospect
- References
- 6 The Building of the Test Rig for Composite Adsorbent Based Solar Adsorption Refrigeration
- Abstract
- Notation
- 1 Introduction
- 1.1 Thesis Statement and Significance of the Research
- 1.2 General Introduction of Vapor Compression Refrigeration
- 1.3 General Introduction of Adsorption Refrigeration
- 1.4 General Introduction of Solar Adsorption Refrigeration
- 1.5 Literature Review
- 1.6 Thesis Main Contents
- 2 Adsorption Theory and Adsorption Equation
- 2.1 About Adsorption
- 2.2 Adsorption Theories
- 2.3 Adsorption Equations
- 2.4 Clapeyron Diagram
- 3 The design of the Test Rig for Composite Adsorbent Adsorption Performance
- 3.1 The Most Commonly Used Test Rigs
- 3.2 The Design of the Test Rig
- 4 The Building and the Sealing of the Test Rig
- 4.1 The Components of the Test Rig
- 4.2 The Building of the Test Rig
- 4.3 Vacuumization of the System
- 5 Conclusion and Prospect
- 5.1 Conclusion
- 5.2 Prospect
- References
- 7 Medium-temperature Small Power Solar Based Organic Rankine Cycle Working Fluids Selecting and System Designing
- Abstract
- 1 Background
- 1.1 Energy Consumption Review
- 1.2 Solar Thermal Electricity(STE)
- 1.3 Research Contents of the Thesis
- 1.4 Significance of the Research
- 2 Fluids and Systems
- 2.1 Working Fluids
- 2.2 Scheme of Different Systems
- 3 Calculation for Selecting Working Fluids
- 3.1 Basic System Calculation Model
- 3.2 IHE System Calculation Model
- 3.3 Operation Parameters Setting
- 3.4 Calculation Result and Analysis
- 3.5 Comparison between Dry Fluids and Water Steam Cycle
- 4 Calculation of Solar Field and Heat Exchangers
- 4.1 The System Parameters
- 4.2 Safe Distance
- 4.3 Solar Field
- 4.4 Heat Exchangers in Evaporating System
- 4.5 IHE
- 4.6 Capital Calculation of Total Heat Exchanging System
- 5 Conclusion
- 5.1 For Working Fluids
- 5.2 For System Model
- 5.3 For Real System Construction
- Appendix
- References
- 8 Multi-period Heat Exchanger Network Synthesis and Its Integration with Solar Thermal
- Abstract
- Notation
- 1 Introduction
- 1.1 Background
- 1.2 State-of-art of HEN Synthesis
- 1.3 Objective of Research
- 1.4 Outline of the Thesis
- 2 Multi-period Heat Exchanger Network Model
- 2.1 Introduction of Method for SPHENS and MPHENS
- 2.2 Single-period Method
- 2.3 Multiperiod Extension Method
- 2.4 Implementation
- 2.5 Chapter Conclusion
- 3 Integration of Solar Thermal with MPHEN
- 3.1 General Introduction of Integration of Solar Thermal with MPHEN
- 3.2 Choosing and Modeling of the Solar Collector
- 3.3 Integration of Solar Thermal with MPHEN
- 3.4 Case study of a Dairy Factory
- 3.5 Chapter Conclusion
- 4 Conclusion and Prospect
- 4.1 Conclusion
- 4.2 Prospect
- References
- Appendix A
- Appendix B 更新時間:2021-04-09 17:39:04