官术网_书友最值得收藏!

Python Machine Learning / Second Edition
會員

UnlockmodernmachinelearninganddeeplearningtechniqueswithPythonbyusingthelatestcutting-edgeopensourcePythonlibraries.AboutThisBook?SecondeditionofthebestsellingbookonMachineLearning?Apracticalapproachtokeyframeworksindatascience,machinelearning,anddeeplearning?UsethemostpowerfulPythonlibrariestoimplementmachinelearninganddeeplearning?GettoknowthebestpracticestoimproveandoptimizeyourmachinelearningsystemsandalgorithmsWhoThisBookIsForIfyouknowsomePythonandyouwanttousemachinelearninganddeeplearning,pickupthisbook.Whetheryouwanttostartfromscratchorextendyourmachinelearningknowledge,thisisanessentialandunmissableresource.Writtenfordevelopersanddatascientistswhowanttocreatepracticalmachinelearninganddeeplearningcode,thisbookisidealfordevelopersanddatascientistswhowanttoteachcomputershowtolearnfromdata.WhatYouWillLearn?Understandthekeyframeworksindatascience,machinelearning,anddeeplearning?HarnessthepowerofthelatestPythonopensourcelibrariesinmachinelearning?Exploremachinelearningtechniquesusingchallengingreal-worlddata?MasterdeepneuralnetworkimplementationusingtheTensorFlowlibrary?Learnthemechanicsofclassificationalgorithmstoimplementthebesttoolforthejob?Predictcontinuoustargetoutcomesusingregressionanalysis?Uncoverhiddenpatternsandstructuresindatawithclustering?DelvedeeperintotextualandsocialmediadatausingsentimentanalysisInDetailMachinelearningiseatingthesoftwareworld,andnowdeeplearningisextendingmachinelearning.Understandandworkatthecuttingedgeofmachinelearning,neuralnetworks,anddeeplearningwiththissecondeditionofSebastianRaschka’sbestsellingbook,PythonMachineLearning.ThoroughlyupdatedusingthelatestPythonopensourcelibraries,thisbookoffersthepracticalknowledgeandtechniquesyouneedtocreateandcontributetomachinelearning,deeplearning,andmoderndataanalysis.Fullyextendedandmodernized,PythonMachineLearningSecondEditionnowincludesthepopularTensorFlowdeeplearninglibrary.Thescikit-learncodehasalsobeenfullyupdatedtoincluderecentimprovementsandadditionstothisversatilemachinelearninglibrary.SebastianRaschkaandVahidMirjalili’suniqueinsightandexpertiseintroduceyoutomachinelearninganddeeplearningalgorithmsfromscratch,andshowyouhowtoapplythemtopracticalindustrychallengesusingrealisticandinterestingexamples.Bytheendofthebook,you’llbereadytomeetthenewdataanalysisopportunitiesintoday’sworld.Ifyou’vereadthefirsteditionofthisbook,you’llbedelightedtofindanewbalanceofclassicalideasandmoderninsightsintomachinelearning.Everychapterhasbeencriticallyupdated,andtherearenewchaptersonkeytechnologies.You’llbeabletolearnandworkwithTensorFlowmoredeeplythaneverbefore,andgetessentialcoverageoftheKerasneuralnetworklibrary,alongwiththemostrecentupdatestoscikit-learn.StyleandApproachPythonMachineLearningSecondEditiontakesapractical,hands-oncodingapproachsoyoucanlearnaboutmachinelearningbycodingwithPython.ThisbookmovesfluentlybetweenthetheoreticalprinciplesofmachinelearningandthepracticaldetailsofimplementationwithPython.

Sebastian Raschka Vahid Mirjalili ·程序設計 ·13.3萬字

QQ閱讀手機版

主站蜘蛛池模板: 永济市| 正镶白旗| 岳普湖县| 中西区| 城口县| 江川县| 青浦区| 南华县| 行唐县| 汉中市| 方城县| 商丘市| 诏安县| 洪洞县| 吉隆县| 崇阳县| 罗源县| 沙田区| 红安县| 无极县| 长沙市| 故城县| 丹寨县| 漠河县| 农安县| 寿宁县| 鸡泽县| 宜州市| 玉屏| 都昌县| 尚义县| 郴州市| 扶风县| 上饶市| 会同县| 息烽县| 波密县| 漠河县| 高要市| 景宁| 吉木乃县|