官术网_书友最值得收藏!

基于信息增強的圖神經網絡學習方法研究
會員

本書深入剖析了圖神經網絡領域所面臨的兩大核心挑戰:深度加深模型退化和監督信息過度依賴。針對這兩大挑戰,本書提出了一系列解決思路,涵蓋模型結構設計、訓練策略優化等方面的內容。全書共7章,第1章主要介紹了圖神經網絡研究的背景與意義,闡述了近年來國內外網絡表示學習與圖神經網絡的研究現狀,分析了圖神經網絡當前面臨的挑戰及其主要問題等;第2章主要對圖神經網絡進行概要論述,包括基礎的理論、典型的模型方法及應用;第3章針對圖神經網絡在節點聚合過程中面臨的節點鄰域混雜的問題,提出了一種基于混合階的圖神經網絡模型;第4章針對圖神經網絡在節點交互過程中面臨的全局結構信息缺失問題,提出了一種基于拓撲結構自適應的圖神經網絡模型;第5章針對自監督信息缺失且包含噪聲的問題,提出了一種圖結構與節點屬性聯合學習的變分圖自編碼器模型;第6章針對節點自監督信息貢獻不做區分的問題,提出了一種基于注意力機制的圖對比學習模型;第7章總結全書并對圖神經網絡可能的研究方向進行展望。本書可供從事人工智能、數據挖掘、機器學習及網絡數據分析等相關領域的科研及工程人員參考,也可作為高等院校計算機、人工智能等專業本科生與研究生的學習參考書。

王杰 ·人工智能 ·8.1萬字

ChatGLM3大模型本地化部署、應用開發與微調
會員

《ChatGLM3大模型本地化部署、應用開發與微調》作為《PyTorch2.0深度學習從零開始學》的姊妹篇,專注于大模型的本地化部署、應用開發以及微調等。《ChatGLM3大模型本地化部署、應用開發與微調》不僅系統地闡述了深度學習大模型的核心理論,更注重實踐應用,通過豐富的案例和場景,引導讀者從理論走向實踐,真正領悟和掌握大模型本地化應用的精髓。全書共分13章,全方位、多角度地展示了大模型本地化實戰的完整方案,內容包括大模型時代的開端、PyTorch2.0深度學習環境搭建、基于gradio的云上自托管ChatGLM3部署實戰、使用ChatGLM3與LangChain實現知識圖譜抽取和智能問答、適配ChatGLM3終端的Template與Chain詳解、ChatGLM3多文本檢索的增強生成實戰、構建以人為本的ChatGLM3規范化Prompt提示工程、使用ChatGLM3的思維鏈構建、GLM源碼分析與文本生成實戰、低資源單GPU微調ChatGLM3實戰、會使用工具的ChatGLM3、上市公司財務報表非結構化信息抽取實戰、上市公司財務報表智能問答與財務預警實戰。《ChatGLM3大模型本地化部署、應用開發與微調》適合大模型的初學者、有一定基礎的大模型研究人員、大模型應用開發人員。同時,《ChatGLM3大模型本地化部署、應用開發與微調》還可作為高等院校或高職高專相關專業大模型課程的教材,助力培養新一代的大模型領域人才。

王曉華 ·人工智能 ·13萬字

QQ閱讀手機版

主站蜘蛛池模板: 红原县| 高陵县| 讷河市| 鄢陵县| 东宁县| 日照市| 泾川县| 灯塔市| 简阳市| 喀喇| 禹州市| 岫岩| 平湖市| 陆丰市| 孟村| 沁阳市| 仁化县| 长海县| 灌阳县| 孟连| 夏河县| 临桂县| 合江县| 美姑县| 胶州市| 兰考县| 黄大仙区| 蚌埠市| 沂南县| 丽水市| 梅河口市| 四平市| 崇文区| 当阳市| 金山区| 莫力| 潮安县| 花莲市| 会昌县| 监利县| 云林县|