官术网_书友最值得收藏!

從機器學習到深度學習:基于scikit-learn與TensorFlow的高效開發實戰
會員

這是一本場景式的機器學習實踐書,筆者努力做到“授人以漁,而非授人以魚”。理論方面從人工智能(AI)與機器學習(ML)的基本要素講起,逐步展開有監督學習、無監督學習、強化學習這三大類模型的應用場景與算法原理;實踐方面通過金融預測、醫療診斷概率模型、月球登陸器、圖像識別、寫詩機器人、中國象棋博弈等案例啟發讀者將機器學習應用在各行各業里,其中后三個案例使用了深度學習技術。本書試圖用通俗的語言講解涵蓋算法模型的機器學習,主要內容包括機器學習通用概念、三個基本科學計算工具、有監督學習、聚類模型、降維模型、隱馬爾可夫模型、貝葉斯網絡、自然語言處理、深度學習、強化學習、模型遷移等。在深入淺出地解析模型與算法之后,介紹使用Python相關工具進行開發的方法、解析經典案例,使讀者做到“能理解、能設計、能編碼、能調試”,沒有任何專業基礎的讀者在學習本書后也能夠上手設計與開發機器學習產品。本書內容深入淺出、實例典型,適合對機器學習感興趣的產品設計、技術管理、數據分析、軟件開發或學生讀者。閱讀本書既能了解當前工業界的主流機器學習與深度學習開發工具的使用方法,又能從戰略方面掌握如何將人工智能技術應用到自己的企業與產品中。

劉長龍 ·人工智能 ·19.6萬字

機器學習:軟件工程方法與實現
會員

本書視角獨特,將軟件工程中的方法應用到機器學習實踐中,重視方法論和工程實踐的融合。本書主要有3個特點。1)機器學習的軟件工程方法:用軟件工程(SoftwareEngineering)中的工具、方法和理論指導機器學習的實踐活動。主要體現在測試驅動開發(TDD)方法、機器學習項目管理方法、工程化軟件應用于數據科學標準化環境,以及開源算法包的大量實踐應用案例等。2)機器學習全生命周期:書中全面呈現了機器學習項目開發的完整鏈路,以項目需求為起點,歷經樣本定義、數據處理、建模、模型上線、模型監控、模型重訓或重建。流程中的大部分節點獨立成章,闡述充分,并且不是單純地闡述理論,而是重在實踐。同時,聚焦機器學習中應用最廣泛和最有效的算法,使之成為貫穿機器學習項目生命周期的一條完整的學習路徑。3)提出機器學習是一門實驗學科:書中有大量的工業實踐代碼,例如數據分析包、特征離散化包、特征選擇包、集成模型框架包、大規模模型上線系統架構和對應代碼包等,對機器學習算法特性也有大量的代碼解析。書中還多次強調對于機器學習這樣一門實驗和實踐學科,工具、方法和策略的重要性,并介紹了在實際項目中對時間、人力成本等的權衡策略。本書不拘泥于公式推演、數值分析計算領域優化求解(梯度、牛頓、拉格朗日、凸優化)等主題,而重在展現機器學習的實際應用,以及各知識點的落地。在寫作方式和內容編寫等方面,本書力求既貼近工程實踐又不失理論深度,給讀者良好的閱讀體驗。

張春強 張和平 唐振 ·人工智能 ·22.4萬字

QQ閱讀手機版

主站蜘蛛池模板: 南江县| 镇安县| 芜湖市| 高州市| 黑山县| 湘阴县| 乐安县| 卫辉市| 辽阳市| 哈密市| 衡水市| 璧山县| 海阳市| 哈巴河县| 称多县| 桃江县| 新昌县| 马山县| 阜城县| 台南市| 丰都县| 盐城市| 重庆市| 承德市| 湄潭县| 和平区| 台山市| 江西省| 温泉县| 博罗县| 武陟县| 湛江市| 肥东县| 绥德县| 梨树县| 浦城县| 都匀市| 隆子县| 修水县| 察雅县| 新余市|