官术网_书友最值得收藏!

高維數(shù)據(jù)非負(fù)矩陣分解方法
會員

本書從算法框架入手,建立系列非負(fù)矩陣分解模型的抽象數(shù)學(xué)模型,即非負(fù)塊配準(zhǔn)模型,從統(tǒng)一的角度分析現(xiàn)有的非負(fù)矩陣分解模型,并用以開發(fā)新的非負(fù)矩陣分解模型。根據(jù)非負(fù)塊配準(zhǔn)模型的分析,本書提出非負(fù)判別局部塊配準(zhǔn)模型,克服了經(jīng)典非負(fù)矩陣分解模型的缺點,提高了非負(fù)矩陣分解模型的分類性能。為了克服經(jīng)典非負(fù)矩陣分解的優(yōu)化算法收斂速度慢的缺點,本書提出在線搜索中利用牛頓法快速搜索步長,提出非負(fù)塊配準(zhǔn)的快速梯度下降算法。為了克服經(jīng)典非負(fù)最小二乘問題的求解算法的缺點,本書利用最優(yōu)梯度法在無需線搜索的情況下以二階收斂速度求解非負(fù)最小二乘問題,提出非負(fù)矩陣分解的高效求解算法。在此基礎(chǔ)上提出非負(fù)矩陣分解的高效求解算法,并開發(fā)非負(fù)塊配準(zhǔn)的最優(yōu)梯度法。為了克服經(jīng)典優(yōu)化算法應(yīng)用于流數(shù)據(jù)處理時計算開銷過大的缺點,本書提出非負(fù)矩陣分解在線優(yōu)化算法,利用魯棒隨機近似算法更新基矩陣,提出在線算法,提高在線優(yōu)化算法的魯棒性。本書結(jié)合非負(fù)矩陣分解的低秩表示特性和殘差矩陣的稀疏特性,指出曼哈頓非負(fù)矩陣分解模型可以有效地抑制數(shù)據(jù)中的噪音和野值,并指出其與低秩和稀疏矩陣分解模型的等價關(guān)系。本書提出高效優(yōu)化算法求解模型,即秩一殘差迭代算法和加速梯度下降算法,前者將模型求解問題分解成若干加權(quán)中值問題并用快速算法求解,后者將模型求解問題分解成若干非負(fù)最小一乘問題并用平滑技術(shù)將其目標(biāo)函數(shù)近似為可微函數(shù),然后利用最優(yōu)梯度法進(jìn)行求解。

管乃洋等 ·數(shù)學(xué) ·11萬字

QQ閱讀手機版

主站蜘蛛池模板: 南皮县| 大埔区| 桂阳县| 汝南县| 黑山县| 喀喇| 兴安县| 临沂市| 阿城市| 尼玛县| 蒙阴县| 万全县| 广东省| 会东县| 睢宁县| 冷水江市| 巴林左旗| 桂平市| 师宗县| 广宁县| 海丰县| 石嘴山市| 青田县| 吉水县| 沭阳县| 扬州市| 兴仁县| 威海市| 文成县| 永春县| 建平县| 鹤峰县| 象山县| 牙克石市| 太仓市| 新和县| 南城县| 同心县| 陆川县| 井陉县| 米易县|