官术网_书友最值得收藏!

Learn Amazon SageMaker
會員

Quicklybuildanddeploymachinelearningmodelswithoutmanaginginfrastructure,andimproveproductivityusingAmazonSageMaker’scapabilitiessuchasAmazonSageMakerStudio,Autopilot,Experiments,Debugger,andModelMonitorKeyFeatures*Build,train,anddeploymachinelearningmodelsquicklyusingAmazonSageMaker*Analyze,detect,andreceivealertsrelatingtovariousbusinessproblemsusingmachinelearningalgorithmsandtechniques*Improveproductivitybytrainingandfine-tuningmachinelearningmodelsinproductionBookDescriptionAmazonSageMakerenablesyoutoquicklybuild,train,anddeploymachinelearning(ML)modelsatscale,withoutmanaginganyinfrastructure.IthelpsyoufocusontheMLproblemathandanddeployhigh-qualitymodelsbyremovingtheheavyliftingtypicallyinvolvedineachstepoftheMLprocess.ThisbookisacomprehensiveguidefordatascientistsandMLdeveloperswhowanttolearntheinsandoutsofAmazonSageMaker.You’llunderstandhowtousevariousmodulesofSageMakerasasingletoolsettosolvethechallengesfacedinML.Asyouprogress,you’llcoverfeaturessuchasAutoML,built-inalgorithmsandframeworks,andtheoptionforwritingyourowncodeandalgorithmstobuildMLmodels.Later,thebookwillshowyouhowtointegrateAmazonSageMakerwithpopulardeeplearninglibrariessuchasTensorFlowandPyTorchtoincreasethecapabilitiesofexistingmodels.You’llalsolearntogetthemodelstoproductionfasterwithminimumeffortandatalowercost.Finally,you’llexplorehowtouseAmazonSageMakerDebuggertoanalyze,detect,andhighlightproblemstounderstandthecurrentmodelstateandimprovemodelaccuracy.BytheendofthisAmazonbook,you’llbeabletouseAmazonSageMakeronthefullspectrumofMLworkflows,fromexperimentation,training,andmonitoringtoscaling,deployment,andautomation.Whatyouwilllearn*Createandautomateend-to-endmachinelearningworkflowsonAmazonWebServices(AWS)*Becomewell-versedwithdataannotationandpreparationtechniques*UseAutoMLfeaturestobuildandtrainmachinelearningmodelswithAutoPilot*Createmodelsusingbuilt-inalgorithmsandframeworksandyourowncode*TraincomputervisionandNLPmodelsusingreal-worldexamples*Covertrainingtechniquesforscaling,modeloptimization,modeldebugging,andcostoptimization*AutomatedeploymenttasksinavarietyofconfigurationsusingSDKandseveralautomationtoolsWhothisbookisforThisbookisforsoftwareengineers,machinelearningdevelopers,datascientists,andAWSuserswhoarenewtousingAmazonSageMakerandwanttobuildhigh-qualitymachinelearningmodelswithoutworryingaboutinfrastructure.KnowledgeofAWSbasicsisrequiredtograsptheconceptscoveredinthisbookmoreeffectively.SomeunderstandingofmachinelearningconceptsandthePythonprogramminglanguagewillalsobebeneficial.

Julien Simon;Francesco Pochetti ·統計 ·10.1萬字

大數據搜索與挖掘及可視化管理方案 :Elastic Stack 5:Elasticsearch、Logstash、Kibana、X-Pack、Beats (第3版)
會員

對大數據的搜索、挖掘、可視化以及集群管理,在當今的“互聯網+”時代是很有必要的。本書的分布式大數據搜索、日志挖掘、可視化、集群監控與管理等方案是基于ElasticStack5而提出的,它能有效應對海量大數據所帶來的分布式數據存儲與處理、全文檢索、日志挖掘、可視化、集群管理與性能監控等問題。構建在全文檢索開源軟件Lucene之上的Elasticsearch,不僅能對海量規模的數據完成分布式索引與檢索,還能提供數據聚合分析;Logstash能有效處理來源于各種數據源的日志信息;Kibana是為Elasticsearch提供數據分析的Web接口,可使用它對數據進行高效的搜索、可視化、分析等操作;XPack監控組件可通過Kibana監控集群的狀態;Beats是采集系統監控數據的代理。了解基于ElasticStack5的各相關組件并掌握它們的基本使用方法和技巧,對于大數據搜索與挖掘及管理是很有必要的。和第1版、第2版相比,本書力求反映基于ElasticStack5架構的最新成果,內容新穎,強調實踐。本書可為高等學校相關專業(如計算機科學與技術、軟件工程、物聯網、信息管理與信息系統、數據科學與大數據技術)學生的學習和科研工作提供幫助,同時對于從事大數據搜索與挖掘、日志分析、信息可視化、集群管理與性能監控的工程技術人員和希望了解網絡信息檢索技術的人員也具有較高的參考價值和工程應用價值。

高莘 ·統計 ·11.8萬字

QQ閱讀手機版

主站蜘蛛池模板: 来凤县| 稻城县| 进贤县| 绥德县| 台中县| 乐亭县| 扬州市| 诏安县| 沾化县| 九江县| 东乌珠穆沁旗| 茂名市| 西安市| 资兴市| 海盐县| 荆门市| 分宜县| 安溪县| 盐池县| 新丰县| 延寿县| 雅江县| 南昌县| 两当县| 尤溪县| 绿春县| 浏阳市| 西乌| 仁布县| 丹阳市| 抚州市| 安西县| 县级市| 苏尼特右旗| 湄潭县| 疏附县| 玛多县| 增城市| 玉林市| 邵阳市| 方正县|