Python預測分析與機器學習
本書從理解問題定義、了解數據內的高層信息、數據清理、視化數據,到基礎建模、模型優化,分享一個數據分析師的視角與思路。在預測分析的流程中,一步步用詳細的圖文代碼講解使用到的庫,如何正確使用各個庫中的方法和函數,以及在遇到類似的問題時如何套用學過的知識。本書共8章。第1章對預測分析的流程進行一個高層次的概述。第2章介紹本書需要安裝使用的庫,并講解數據清理步驟的執行。第3章講解基礎建模需考慮的細節,結合第4章的模型選擇,可以搭建一個基礎的預測管道。第5章和第6章分別從模型和數據的角度講解如何優化預測表現。第7章講解時間序列這一特殊數據的預測方法。最后,第8章總結全書學習到的內容,解決一個實戰問題。本書面向3類讀者。第1類,有編程基礎但毫無數據科學背景,有意入門的讀者;第2類,有數據科學理論基礎,有意進入實操的讀者,如剛畢業沒有業界經驗的學生;第3類,有數據科學理論基礎與實操經驗,但日常工作集中在數據分析管道中的數據分析師。
·13.9萬字