破解深度學習(核心篇):模型算法與實現
本書旨在采用一種符合讀者認知角度且能提升其學習效率的方式來講解深度學習背后的核心知識、原理和內在邏輯。經過基礎篇的學習,想必你已經對深度學習的總體框架有了初步的了解和認識,掌握了深度神經網絡從核心概念、常見問題到典型網絡的基本知識。本書為核心篇,將帶領讀者實現從入門到進階、從理論到實戰的跨越。全書共7章,前三章包括復雜CNN、RNN和注意力機制網絡,深入詳解各類主流模型及其變體;第4章介紹這三類基礎模型的組合體,即概率生成模型;第5章和第6章著重介紹這些復雜模型在計算機視覺和自然語言處理兩大最常見領域的應用;第7章講解生成式大語言模型的內在原理并對其發展趨勢予以展望。本書系統全面,深入淺出,且輔以生活中的案例進行類比,以此降低學習難度,能夠幫助讀者迅速掌握深度學習的基礎知識。本書適合有志于投身人工智能領域的人員閱讀,也適合作為高等院校人工智能相關專業的教學用書。
·13.4萬字