- Scala for Machine Learning(Second Edition)
- Patrick R. Nicolas
- 142字
- 2021-07-08 10:43:04
Summary
We hope you enjoyed this introduction to machine learning. You learned how to leverage your skills in Scala programming to create a simple logistic regression program for predicting stock price/volume action. Here are the highlights of this introductory chapter:
- From monadic composition, high-order collection methods for parallelization to configurability and reusability patterns, Scala is the perfect fit to implement data mining and machine learning algorithms for large-scale projects.
- There are many logical steps required to create and deploy a machine learning model.
- The implementation of the binomial logistic regression classifier presented as part of the test case is simple enough to encourage you to learn how to write and apply more advanced machine learning algorithms.
To the delight of Scala programming aficionados, the next chapter will dig deeper into building a flexible workflow by leveraging monadic data transformation and stackable traits.
推薦閱讀
- Drupal 8 Blueprints
- Java Web應用開發技術與案例教程(第2版)
- PLC編程與調試技術(松下系列)
- 領域驅動設計:軟件核心復雜性應對之道(修訂版)
- 基于SpringBoot實現:Java分布式中間件開發入門與實戰
- App Inventor 2 Essentials
- Clojure Polymorphism
- Drupal 8 Development:Beginner's Guide(Second Edition)
- Java程序設計實用教程(第2版)
- C語言程序設計教程
- AngularJS UI Development
- Android應用開發攻略
- 面向物聯網的Android應用開發與實踐
- 編程風格:程序設計與系統構建的藝術(原書第2版)
- 移動智能系統測試原理與實踐