- Scala for Machine Learning(Second Edition)
- Patrick R. Nicolas
- 147字
- 2021-07-08 10:43:04
Chapter 2. Data Pipelines
In the first chapter, you were acquainted with some rudimentary concepts regarding data processing, clustering, and classification.
This chapter is dedicated to the creation and maintenance of a flexible end-to-end workflow to train and classify data. The first section of the chapter introduces a data-centric (functional) approach to create number crunching applications, followed by a description of a configurable workflow computation model. The chapter concludes with an overview of different model validation techniques.
You will learn how to do the following:
- Apply the concept of monadic design to create dynamic workflows
- Leverage some of Scala's advanced patterns, such as the cake pattern, to build portable computational workflows
- Take into account the bias-variance trade-off in selecting a model
- Overcome overfitting in modeling
- Break down data into training, test and validation sets
- Implement model validation in Scala using precision, recall, and F score
推薦閱讀
- Learning Cython Programming(Second Edition)
- Android Jetpack開(kāi)發(fā):原理解析與應(yīng)用實(shí)戰(zhàn)
- 微服務(wù)與事件驅(qū)動(dòng)架構(gòu)
- SQL Server 2016從入門(mén)到精通(視頻教學(xué)超值版)
- Ext JS Data-driven Application Design
- C/C++常用算法手冊(cè)(第3版)
- 人人都是網(wǎng)站分析師:從分析師的視角理解網(wǎng)站和解讀數(shù)據(jù)
- 實(shí)戰(zhàn)Java高并發(fā)程序設(shè)計(jì)(第3版)
- ASP.NET 3.5程序設(shè)計(jì)與項(xiàng)目實(shí)踐
- 深入理解Elasticsearch(原書(shū)第3版)
- Linux C編程:一站式學(xué)習(xí)
- Learning Node.js for .NET Developers
- JavaScript動(dòng)態(tài)網(wǎng)頁(yè)編程
- PHP與MySQL權(quán)威指南
- Vue.js 3應(yīng)用開(kāi)發(fā)與核心源碼解析