舉報

會員
Scala for Machine Learning(Second Edition)
最新章節:
Index
Ifyou’readatascientistoradataanalystwithafundamentalknowledgeofScalawhowantstolearnandimplementvariousMachinelearningtechniques,thisbookisforyou.AllyouneedisagoodunderstandingoftheScalaprogramminglanguage,abasicknowledgeofstatistics,akeeninterestinBigDataprocessing,andthisbook!
目錄(152章)
倒序
- 封面
- 版權頁
- Credits
- About the Author
- About the Reviewers
- www.PacktPub.com
- eBooks discount offers and more
- Customer Feedback
- Preface
- What this book covers
- What you need for this book
- Who this book is for
- Conventions
- Reader feedback
- Customer support
- Chapter 1. Getting Started
- Mathematical notations for the curious
- Why machine learning?
- Why Scala?
- Model categorization
- Taxonomy of machine learning algorithms
- Leveraging Java libraries
- Tools and frameworks
- Source code
- Let's kick the tires
- Summary
- Chapter 2. Data Pipelines
- Modeling
- Defining a methodology
- Monadic data transformation
- Workflow computational model
- Profiling data
- Assessing a model
- Summary
- Chapter 3. Data Preprocessing
- Time series in Scala
- Moving averages
- Fourier analysis
- The discrete Kalman filter
- Alternative preprocessing techniques
- Summary
- Chapter 4. Unsupervised Learning
- K-mean clustering
- Expectation-Maximization (EM)
- Summary
- Chapter 5. Dimension Reduction
- Challenging model complexity
- The divergences
- Principal components analysis (PCA)
- Nonlinear models
- Summary
- Chapter 6. Na?ve Bayes Classifiers
- Probabilistic graphical models
- Na?ve Bayes classifiers
- Multivariate Bernoulli classification
- Na?ve Bayes and text mining
- Pros and cons
- Summary
- Chapter 7. Sequential Data Models
- Markov decision processes
- The hidden Markov model (HMM)
- Conditional random fields
- Regularized CRF and text analytics
- Comparing CRF and HMM
- Performance consideration
- Summary
- Chapter 8. Monte Carlo Inference
- The purpose of sampling
- Gaussian sampling
- Monte Carlo approximation
- Bootstrapping with replacement
- Markov Chain Monte Carlo (MCMC)
- Summary
- Chapter 9. Regression and Regularization
- Linear regression
- Regularization
- Numerical optimization
- Logistic regression
- Summary
- Chapter 10. Multilayer Perceptron
- Feed-forward neural networks (FFNN)
- The multilayer perceptron (MLP)
- Evaluation
- Benefits and limitations
- Summary
- Chapter 11. Deep Learning
- Sparse autoencoder
- Restricted Boltzmann Machines (RBMs)
- Convolution neural networks
- Chapter 12. Kernel Models and SVM
- Kernel functions
- The support vector machine (SVM)
- Performance considerations
- Summary
- Chapter 13. Evolutionary Computing
- Evolution
- Genetic algorithms and machine learning
- Genetic algorithm components
- Implementation
- GA for trading strategies
- Advantages and risks of genetic algorithms
- Summary
- Chapter 14. Multiarmed Bandits
- K-armed bandit
- Thompson sampling
- Upper bound confidence
- Summary
- Chapter 15. Reinforcement Learning
- Reinforcement learning
- Learning classifier systems
- Summary
- Chapter 16. Parallelism in Scala and Akka
- Overview
- Scala
- Scalability with Actors
- Akka
- Summary
- Chapter 17. Apache Spark MLlib
- Overview
- Apache Spark core
- MLlib library
- Reusable ML pipelines
- Extending Spark
- Streaming engine
- Performance evaluation
- Pros and cons
- Summary
- Appendix A. Basic Concepts
- Scala programming
- Mathematics
- Finances 101
- Suggested online courses
- References
- Appendix B. References
- Chapter 1
- Chapter 2
- Chapter 3
- Chapter 4
- Chapter 5
- Chapter 6
- Chapter 7
- Chapter 8
- Chapter 9
- Chapter 10
- Chapter 11
- Chapter 12
- Chapter 13
- Chapter 14
- Chapter 15
- Chapter 16
- Chapter 17
- Index 更新時間:2021-07-08 10:43:39
推薦閱讀
- 精通JavaScript+jQuery:100%動態網頁設計密碼
- 程序設計與實踐(VB.NET)
- MySQL 8 DBA基礎教程
- 單片機應用與調試項目教程(C語言版)
- Highcharts Cookbook
- WordPress 4.0 Site Blueprints(Second Edition)
- SQL基礎教程(第2版)
- 西門子S7-200 SMART PLC編程從入門到實踐
- Lighttpd源碼分析
- Spring Boot+MVC實戰指南
- Swift語言實戰晉級
- 軟件工程基礎與實訓教程
- Spring Boot 3:入門與應用實戰
- Java Script從入門到精通(第5版)
- Jenkins 2.x實踐指南
- Programming MapReduce with Scalding
- Vue.js從入門到精通
- Python機器學習
- 計算機視覺增強現實應用程序開發
- Hands/On Microsoft Teams
- 設計模式的藝術
- Python地球科學數據分析
- 基于Kotlin的Spring Boot微服務實戰
- Excel 2010 VBA編程與實踐
- Learning iPhone Game Development with Cocos2D 3.0
- C#應用開發與實踐
- Visual Basic程序設計與應用教程
- Mastering Angular 2 Components
- C語言程序設計教程
- 計算機輔助設計與繪圖(AutoCAD 2015)(第三版)