- Scala for Machine Learning(Second Edition)
- Patrick R. Nicolas
- 78字
- 2021-07-08 10:43:03
Leveraging Java libraries
There are numerous robust, accurate, and efficient Java libraries for mathematics, linear algebra, or optimization that have been widely used for many years:
- JBlas/Linpack: https://github.com/mikiobraun/jblas
- Parallel Colt: https://github.com/rwl/ParallelColt
- Apache Commons Math: http://commons.apache.org/proper/commons-math
There is absolutely no need to rewrite, debug, and test these components in Scala. Developers should consider creating a wrapper or interface to his/her favorite and reliable Java library. The book leverages the Apache Commons Math library for some specific linear algebra algorithms.
推薦閱讀
- Designing Machine Learning Systems with Python
- Redis入門指南(第3版)
- Arduino開發(fā)實(shí)戰(zhàn)指南:LabVIEW卷
- Java Web開發(fā)技術(shù)教程
- 概率成形編碼調(diào)制技術(shù)理論及應(yīng)用
- Multithreading in C# 5.0 Cookbook
- Python圖形化編程(微課版)
- Learning YARN
- OpenCV with Python By Example
- Android應(yīng)用開發(fā)深入學(xué)習(xí)實(shí)錄
- Raspberry Pi Robotic Projects(Third Edition)
- 并行編程方法與優(yōu)化實(shí)踐
- Android Studio Cookbook
- Hacking Android
- Visual Basic程序設(shè)計(jì)基礎(chǔ)