- Scala for Machine Learning(Second Edition)
- Patrick R. Nicolas
- 78字
- 2021-07-08 10:43:03
Leveraging Java libraries
There are numerous robust, accurate, and efficient Java libraries for mathematics, linear algebra, or optimization that have been widely used for many years:
- JBlas/Linpack: https://github.com/mikiobraun/jblas
- Parallel Colt: https://github.com/rwl/ParallelColt
- Apache Commons Math: http://commons.apache.org/proper/commons-math
There is absolutely no need to rewrite, debug, and test these components in Scala. Developers should consider creating a wrapper or interface to his/her favorite and reliable Java library. The book leverages the Apache Commons Math library for some specific linear algebra algorithms.
推薦閱讀
- DBA攻堅指南:左手Oracle,右手MySQL
- PHP程序設計(慕課版)
- AngularJS Web Application Development Blueprints
- 軟件架構:Python語言實現
- SharePoint Development with the SharePoint Framework
- Python算法從菜鳥到達人
- Elasticsearch Server(Third Edition)
- Nginx實戰:基于Lua語言的配置、開發與架構詳解
- 硅谷Python工程師面試指南:數據結構、算法與系統設計
- Learning jQuery(Fourth Edition)
- 詳解MATLAB圖形繪制技術
- Scrapy網絡爬蟲實戰
- ASP.NET Core and Angular 2
- Hadoop Blueprints
- 程序員的英語