舉報

會員
Scala for Machine Learning(Second Edition)
最新章節:
Index
Ifyou’readatascientistoradataanalystwithafundamentalknowledgeofScalawhowantstolearnandimplementvariousMachinelearningtechniques,thisbookisforyou.AllyouneedisagoodunderstandingoftheScalaprogramminglanguage,abasicknowledgeofstatistics,akeeninterestinBigDataprocessing,andthisbook!
- Index 更新時間:2021-07-08 10:43:39
- Chapter 17
- Chapter 16
- Chapter 15
- Chapter 14
- Chapter 13
- Chapter 12
- Chapter 11
- Chapter 10
- Chapter 9
- Chapter 8
- Chapter 7
- Chapter 6
- Chapter 5
- Chapter 4
- Chapter 3
- Chapter 2
- Chapter 1
- Appendix B. References
- References
- Suggested online courses
- Finances 101
- Mathematics
- Scala programming
- Appendix A. Basic Concepts
- Summary
- Pros and cons
- Performance evaluation
- Streaming engine
- Extending Spark
- Reusable ML pipelines
- MLlib library
- Apache Spark core
- Overview
- Chapter 17. Apache Spark MLlib
- Summary
- Akka
- Scalability with Actors
- Scala
- Overview
- Chapter 16. Parallelism in Scala and Akka
- Summary
- Learning classifier systems
- Reinforcement learning
- Chapter 15. Reinforcement Learning
- Summary
- Upper bound confidence
- Thompson sampling
- K-armed bandit
- Chapter 14. Multiarmed Bandits
- Summary
- Advantages and risks of genetic algorithms
- GA for trading strategies
- Implementation
- Genetic algorithm components
- Genetic algorithms and machine learning
- Evolution
- Chapter 13. Evolutionary Computing
- Summary
- Performance considerations
- The support vector machine (SVM)
- Kernel functions
- Chapter 12. Kernel Models and SVM
- Convolution neural networks
- Restricted Boltzmann Machines (RBMs)
- Sparse autoencoder
- Chapter 11. Deep Learning
- Summary
- Benefits and limitations
- Evaluation
- The multilayer perceptron (MLP)
- Feed-forward neural networks (FFNN)
- Chapter 10. Multilayer Perceptron
- Summary
- Logistic regression
- Numerical optimization
- Regularization
- Linear regression
- Chapter 9. Regression and Regularization
- Summary
- Markov Chain Monte Carlo (MCMC)
- Bootstrapping with replacement
- Monte Carlo approximation
- Gaussian sampling
- The purpose of sampling
- Chapter 8. Monte Carlo Inference
- Summary
- Performance consideration
- Comparing CRF and HMM
- Regularized CRF and text analytics
- Conditional random fields
- The hidden Markov model (HMM)
- Markov decision processes
- Chapter 7. Sequential Data Models
- Summary
- Pros and cons
- Na?ve Bayes and text mining
- Multivariate Bernoulli classification
- Na?ve Bayes classifiers
- Probabilistic graphical models
- Chapter 6. Na?ve Bayes Classifiers
- Summary
- Nonlinear models
- Principal components analysis (PCA)
- The divergences
- Challenging model complexity
- Chapter 5. Dimension Reduction
- Summary
- Expectation-Maximization (EM)
- K-mean clustering
- Chapter 4. Unsupervised Learning
- Summary
- Alternative preprocessing techniques
- The discrete Kalman filter
- Fourier analysis
- Moving averages
- Time series in Scala
- Chapter 3. Data Preprocessing
- Summary
- Assessing a model
- Profiling data
- Workflow computational model
- Monadic data transformation
- Defining a methodology
- Modeling
- Chapter 2. Data Pipelines
- Summary
- Let's kick the tires
- Source code
- Tools and frameworks
- Leveraging Java libraries
- Taxonomy of machine learning algorithms
- Model categorization
- Why Scala?
- Why machine learning?
- Mathematical notations for the curious
- Chapter 1. Getting Started
- Customer support
- Reader feedback
- Conventions
- Who this book is for
- What you need for this book
- What this book covers
- Preface
- Customer Feedback
- eBooks discount offers and more
- www.PacktPub.com
- About the Reviewers
- About the Author
- Credits
- 版權頁
- 封面
- 封面
- 版權頁
- Credits
- About the Author
- About the Reviewers
- www.PacktPub.com
- eBooks discount offers and more
- Customer Feedback
- Preface
- What this book covers
- What you need for this book
- Who this book is for
- Conventions
- Reader feedback
- Customer support
- Chapter 1. Getting Started
- Mathematical notations for the curious
- Why machine learning?
- Why Scala?
- Model categorization
- Taxonomy of machine learning algorithms
- Leveraging Java libraries
- Tools and frameworks
- Source code
- Let's kick the tires
- Summary
- Chapter 2. Data Pipelines
- Modeling
- Defining a methodology
- Monadic data transformation
- Workflow computational model
- Profiling data
- Assessing a model
- Summary
- Chapter 3. Data Preprocessing
- Time series in Scala
- Moving averages
- Fourier analysis
- The discrete Kalman filter
- Alternative preprocessing techniques
- Summary
- Chapter 4. Unsupervised Learning
- K-mean clustering
- Expectation-Maximization (EM)
- Summary
- Chapter 5. Dimension Reduction
- Challenging model complexity
- The divergences
- Principal components analysis (PCA)
- Nonlinear models
- Summary
- Chapter 6. Na?ve Bayes Classifiers
- Probabilistic graphical models
- Na?ve Bayes classifiers
- Multivariate Bernoulli classification
- Na?ve Bayes and text mining
- Pros and cons
- Summary
- Chapter 7. Sequential Data Models
- Markov decision processes
- The hidden Markov model (HMM)
- Conditional random fields
- Regularized CRF and text analytics
- Comparing CRF and HMM
- Performance consideration
- Summary
- Chapter 8. Monte Carlo Inference
- The purpose of sampling
- Gaussian sampling
- Monte Carlo approximation
- Bootstrapping with replacement
- Markov Chain Monte Carlo (MCMC)
- Summary
- Chapter 9. Regression and Regularization
- Linear regression
- Regularization
- Numerical optimization
- Logistic regression
- Summary
- Chapter 10. Multilayer Perceptron
- Feed-forward neural networks (FFNN)
- The multilayer perceptron (MLP)
- Evaluation
- Benefits and limitations
- Summary
- Chapter 11. Deep Learning
- Sparse autoencoder
- Restricted Boltzmann Machines (RBMs)
- Convolution neural networks
- Chapter 12. Kernel Models and SVM
- Kernel functions
- The support vector machine (SVM)
- Performance considerations
- Summary
- Chapter 13. Evolutionary Computing
- Evolution
- Genetic algorithms and machine learning
- Genetic algorithm components
- Implementation
- GA for trading strategies
- Advantages and risks of genetic algorithms
- Summary
- Chapter 14. Multiarmed Bandits
- K-armed bandit
- Thompson sampling
- Upper bound confidence
- Summary
- Chapter 15. Reinforcement Learning
- Reinforcement learning
- Learning classifier systems
- Summary
- Chapter 16. Parallelism in Scala and Akka
- Overview
- Scala
- Scalability with Actors
- Akka
- Summary
- Chapter 17. Apache Spark MLlib
- Overview
- Apache Spark core
- MLlib library
- Reusable ML pipelines
- Extending Spark
- Streaming engine
- Performance evaluation
- Pros and cons
- Summary
- Appendix A. Basic Concepts
- Scala programming
- Mathematics
- Finances 101
- Suggested online courses
- References
- Appendix B. References
- Chapter 1
- Chapter 2
- Chapter 3
- Chapter 4
- Chapter 5
- Chapter 6
- Chapter 7
- Chapter 8
- Chapter 9
- Chapter 10
- Chapter 11
- Chapter 12
- Chapter 13
- Chapter 14
- Chapter 15
- Chapter 16
- Chapter 17
- Index 更新時間:2021-07-08 10:43:39