舉報

會員
Test-Driven Machine Learning
最新章節(jié):
Index
Thisbookisintendedfordatatechnologists(scientists,analysts,ordevelopers)withpreviousmachinelearningexperiencewhoarealsocomfortablereadingcodeinPython.Youmaybestarting,orhavealreadystarted,amachinelearningprojectatworkandarelookingforawaytodeliverresultsquicklytoenablerapiditerationandimprovement.Thoselookingforexamplesofhowtoisolateissuesinmodelsandimprovethemwillfindideasinthisbooktomoveforward.
目錄(71章)
倒序
- 封面
- 版權(quán)頁
- Credits
- About the Author
- About the Reviewers
- www.PacktPub.com
- Support files eBooks discount offers and more
- Preface
- What this book covers
- What you need for this book
- Who this book is for
- Conventions
- Reader feedback
- Customer support
- Chapter 1. Introducing Test-Driven Machine Learning
- Test-driven development
- The TDD cycle
- Behavior-driven development
- Our first test
- TDD applied to machine learning
- Dealing with randomness
- Different approaches to validating the improved models
- Quantifying the classification models
- Summary
- Chapter 2. Perceptively Testing a Perceptron
- Getting started
- Summary
- Chapter 3. Exploring the Unknown with Multi-armed Bandits
- Understanding a bandit
- Testing with simulation
- Starting from scratch
- Simulating real world situations
- A randomized probability matching algorithm
- A bootstrapping bandit
- The problem with straight bootstrapping
- Multi-armed armed bandit throw down
- Summary
- Chapter 4. Predicting Values with Regression
- Refresher on advanced regression
- Generating our own data
- Building the foundations of our model
- Cross-validating our model
- Generating data
- Summary
- Chapter 5. Making Decisions Black and White with Logistic Regression
- Generating logistic data
- Measuring model accuracy
- Generating a more complex example
- Test driving our model
- Summary
- Chapter 6. You're So Na?ve Bayes
- Gaussian classification by hand
- Beginning the development
- Summary
- Chapter 7. Optimizing by Choosing a New Algorithm
- Upgrading the classifier
- Applying our classifier
- Upgrading to Random Forest
- Summary
- Chapter 8. Exploring scikit-learn Test First
- Test-driven design
- Planning our journey
- Getting choosey
- Developing testable documentation
- Summary
- Chapter 9. Bringing It All Together
- Starting at the highest level
- The real world
- What we've accomplished
- Summary
- Index 更新時間:2021-07-30 10:20:13
推薦閱讀
- Microsoft Exchange Server PowerShell Cookbook(Third Edition)
- 程序員數(shù)學(xué):用Python學(xué)透線性代數(shù)和微積分
- Python測試開發(fā)入門與實踐
- 羅克韋爾ControlLogix系統(tǒng)應(yīng)用技術(shù)
- Learning Python Design Patterns(Second Edition)
- Unity Shader入門精要
- Hands-On Swift 5 Microservices Development
- OpenStack Orchestration
- Statistical Application Development with R and Python(Second Edition)
- Scrapy網(wǎng)絡(luò)爬蟲實戰(zhàn)
- Java編程指南:語法基礎(chǔ)、面向?qū)ο蟆⒑瘮?shù)式編程與項目實戰(zhàn)
- 計算機常用算法與程序設(shè)計教程(第2版)
- C# 10核心技術(shù)指南
- Windows 10 for Enterprise Administrators
- Python編程基礎(chǔ)與應(yīng)用
- C# 4.0權(quán)威指南
- Developing Multi:Platform Apps with Visual Studio Code
- MySQL高可用實踐
- Mastering PostCSS for Web Design
- Microsoft Team Foundation Server 2015 Cookbook
- Python 3 Text Processing with NLTK 3 Cookbook
- WordPress Complete(Sixth Edition)
- R語言入門與實踐
- Dapr與.NET微服務(wù)實戰(zhàn)
- HTML+CSS+JavaScript實用詳解
- Python科學(xué)與工程數(shù)據(jù)分析實戰(zhàn)
- AWS Tools for PowerShell 6
- JavaScript和jQuery實戰(zhàn)手冊(原書第3版)
- 步步為贏:交互設(shè)計全流程解析
- Python程序設(shè)計