首頁 > 工業(yè)技術(shù) >
自動化技術(shù)
> Mastering Predictive Analytics with scikit:learn and TensorFlow最新章節(jié)目錄
舉報

會員
Mastering Predictive Analytics with scikit:learn and TensorFlow
Pythonisaprogramminglanguagethatprovidesawiderangeoffeaturesthatcanbeusedinthefieldofdatascience.MasteringPredictiveAnalyticswithscikit-learnandTensorFlowcoversvariousimplementationsofensemblemethods,howtheyareusedwithreal-worlddatasets,andhowtheyimprovepredictionaccuracyinclassificationandregressionproblems.Thisbookstartswithensemblemethodsandtheirfeatures.Youwillseethatscikit-learnprovidestoolsforchoosinghyperparametersformodels.Asyoumakeyourwaythroughthebook,youwillcoverthenitty-grittyofpredictiveanalyticsandexploreitsfeaturesandcharacteristics.YouwillalsobeintroducedtoartificialneuralnetworksandTensorFlow,andhowitisusedtocreateneuralnetworks.Inthefinalchapter,youwillexplorefactorssuchascomputationalpower,alongwithimprovementmethodsandsoftwareenhancementsforefficientpredictiveanalytics.Bytheendofthisbook,youwillbewell-versedinusingdeepneuralnetworkstosolvecommonproblemsinbigdataanalysis.
目錄(122章)
倒序
- 封面
- Title Page
- Copyright and Credits
- Mastering Predictive Analytics with scikit-learn and TensorFlow
- Packt Upsell
- Why subscribe?
- Packt.com
- Contributor
- About the author
- Packt is searching for authors like you
- Preface
- Who this book is for
- What this book covers
- To get the most out of this book
- Download the example code files
- Download the color images
- Conventions used
- Get in touch
- Reviews
- Ensemble Methods for Regression and Classification
- Ensemble methods and their working
- Bootstrap sampling
- Bagging
- Random forests
- Boosting
- Ensemble methods for regression
- The diamond dataset
- Training different regression models
- KNN model
- Bagging model
- Random forests model
- Boosting model
- Using ensemble methods for classification
- Predicting a credit card dataset
- Training different regression models
- Logistic regression model
- Bagging model
- Random forest model
- Boosting model
- Summary
- Cross-validation and Parameter Tuning
- Holdout cross-validation
- K-fold cross-validation
- Implementing k-fold cross-validation
- Comparing models with k-fold cross-validation
- Introduction to hyperparameter tuning
- Exhaustive grid search
- Hyperparameter tuning in scikit-learn
- Comparing tuned and untuned models
- Summary
- Working with Features
- Feature selection methods
- Removing dummy features with low variance
- Identifying important features statistically
- Recursive feature elimination
- Dimensionality reduction and PCA
- Feature engineering
- Creating new features
- Improving models with feature engineering
- Training your model
- Reducible and irreducible error
- Summary
- Introduction to Artificial Neural Networks and TensorFlow
- Introduction to ANNs
- Perceptrons
- Multilayer perceptron
- Elements of a deep neural network model
- Deep learning
- Elements of an MLP model
- Introduction to TensorFlow
- TensorFlow installation
- Core concepts in TensorFlow
- Tensors
- Computational graph
- Summary
- Predictive Analytics with TensorFlow and Deep Neural Networks
- Predictions with TensorFlow
- Introduction to the MNIST dataset
- Building classification models using MNIST dataset
- Elements of the DNN model
- Building the DNN
- Reading the data
- Defining the architecture
- Placeholders for inputs and labels
- Building the neural network
- The loss function
- Defining optimizer and training operations
- Training strategy and valuation of accuracy of the classification
- Running the computational graph
- Regression with Deep Neural Networks (DNN)
- Elements of the DNN model
- Building the DNN
- Reading the data
- Objects for modeling
- Training strategy
- Input pipeline for the DNN
- Defining the architecture
- Placeholders for input values and labels
- Building the DNN
- The loss function
- Defining optimizer and training operations
- Running the computational graph
- Classification with DNNs
- Exponential linear unit activation function
- Classification with DNNs
- Elements of the DNN model
- Building the DNN
- Reading the data
- Producing the objects for modeling
- Training strategy
- Input pipeline for DNN
- Defining the architecture
- Placeholders for inputs and labels
- Building the neural network
- The loss function
- Evaluation nodes
- Optimizer and the training operation
- Run the computational graph
- Evaluating the model with a set threshold
- Summary
- Other Books You May Enjoy
- Leave a review - let other readers know what you think 更新時間:2021-07-23 16:42:54
推薦閱讀
- Google Cloud Platform Cookbook
- Apache Hive Essentials
- 電腦上網(wǎng)直通車
- 大型數(shù)據(jù)庫管理系統(tǒng)技術(shù)、應(yīng)用與實例分析:SQL Server 2005
- Windows游戲程序設(shè)計基礎(chǔ)
- Enterprise PowerShell Scripting Bootcamp
- 步步圖解自動化綜合技能
- Implementing AWS:Design,Build,and Manage your Infrastructure
- 水下無線傳感器網(wǎng)絡(luò)的通信與決策技術(shù)
- 在實戰(zhàn)中成長:Windows Forms開發(fā)之路
- Visual C++項目開發(fā)案例精粹
- 精通LabVIEW程序設(shè)計
- 基于敏捷開發(fā)的數(shù)據(jù)結(jié)構(gòu)研究
- PyTorch深度學習
- 從實踐中學嵌入式Linux操作系統(tǒng)
- Windows Server 2012 Automation with PowerShell Cookbook
- 我的IT世界
- Practical Internet of Things with JavaScript
- 過程控制與集散系統(tǒng)
- 企業(yè)網(wǎng)搭建及應(yīng)用寶典
- 網(wǎng)絡(luò)數(shù)據(jù)庫應(yīng)用系統(tǒng)開發(fā)技術(shù):ASP.NET
- Hands-On Data Science with Anaconda
- 零起點學西門子變頻器應(yīng)用
- Big Data Analysis with Python
- 人工智能大冒險:青少年的AI啟蒙書
- 局域網(wǎng)實訓教程
- Practical Site Reliability Engineering
- 輕松學HTML+CSS網(wǎng)站開發(fā)
- Kali Linux Cookbook
- Hands-On Q-Learning with Python