- Mastering Predictive Analytics with scikit:learn and TensorFlow
- Alan Fontaine
- 131字
- 2021-07-23 16:42:27
Training different regression models
The following screenshot shows a dataframe where we are going to save performance. We are going to run four models, namely logistic regression, bagging, random forest, and boosting:
We are going to use the following evaluation metrics in this case:
- accuracy: This metric measures how often the model predicts defaulters and non-defaulters correctly
- precision: This metric will be when the model predicts the default and how often the model is correct
- recall: This metric will be the proportion of actual defaulters that the model will correctly predict
The most important of these is the recall metric. The reason behind this is that we want to maximize the proportion of actual defaulters that the model identifies, and so the model with the best recall is selected.
推薦閱讀
- 計(jì)算機(jī)圖形學(xué)
- 手把手教你玩轉(zhuǎn)RPA:基于UiPath和Blue Prism
- 數(shù)據(jù)挖掘?qū)嵱冒咐治?/a>
- Windows 8應(yīng)用開(kāi)發(fā)實(shí)戰(zhàn)
- 物聯(lián)網(wǎng)與云計(jì)算
- Maya 2012從入門(mén)到精通
- Windows內(nèi)核原理與實(shí)現(xiàn)
- 系統(tǒng)安裝與重裝
- Learn CloudFormation
- 中國(guó)戰(zhàn)略性新興產(chǎn)業(yè)研究與發(fā)展·工業(yè)機(jī)器人
- 云原生架構(gòu)進(jìn)階實(shí)戰(zhàn)
- 傳感器與新聞
- Visual FoxPro程序設(shè)計(jì)
- 統(tǒng)計(jì)挖掘與機(jī)器學(xué)習(xí):大數(shù)據(jù)預(yù)測(cè)建模和分析技術(shù)(原書(shū)第3版)
- Apache源代碼全景分析(第1卷):體系結(jié)構(gòu)與核心模塊