官术网_书友最值得收藏!

Random forests model

Random forests is another ensemble learning model. Here, we get all the ensemble learning objects from the ensemble submodule in scikit-learn. For example, here, we use the RandomForestRegressor method. The following screenshot, shows the algorithm used for this model:

So, in a case where we produce a forest of 50 individual predictors, this algorithm will produce 50 individual trees. Each tree will have max_depth of 16, which will then produce the individual predictions again by majority vote.

主站蜘蛛池模板: 鄯善县| 芦溪县| 冀州市| 浪卡子县| 普定县| 赞皇县| 宜都市| 宁城县| 青田县| 新源县| 乌审旗| 正定县| 澎湖县| 郴州市| 嘉兴市| 信宜市| 神木县| 桂阳县| 灵宝市| 方正县| 拉孜县| 汝城县| 当雄县| 桃园县| 名山县| 清远市| 赫章县| 鄱阳县| 明水县| 兴国县| 额济纳旗| 广宗县| 城市| 高邑县| 玉溪市| 嘉祥县| 定襄县| 土默特右旗| 通海县| 宣武区| 冷水江市|