- Mastering Predictive Analytics with scikit:learn and TensorFlow
- Alan Fontaine
- 83字
- 2021-07-23 16:42:25
Random forests model
Random forests is another ensemble learning model. Here, we get all the ensemble learning objects from the ensemble submodule in scikit-learn. For example, here, we use the RandomForestRegressor method. The following screenshot, shows the algorithm used for this model:
So, in a case where we produce a forest of 50 individual predictors, this algorithm will produce 50 individual trees. Each tree will have max_depth of 16, which will then produce the individual predictions again by majority vote.
推薦閱讀
- Instant Raspberry Pi Gaming
- Div+CSS 3.0網(wǎng)頁(yè)布局案例精粹
- Seven NoSQL Databases in a Week
- 并行數(shù)據(jù)挖掘及性能優(yōu)化:關(guān)聯(lián)規(guī)則與數(shù)據(jù)相關(guān)性分析
- PIC單片機(jī)C語(yǔ)言非常入門(mén)與視頻演練
- 計(jì)算機(jī)網(wǎng)絡(luò)技術(shù)實(shí)訓(xùn)
- 氣動(dòng)系統(tǒng)裝調(diào)與PLC控制
- 電腦上網(wǎng)輕松入門(mén)
- 基于企業(yè)網(wǎng)站的顧客感知服務(wù)質(zhì)量評(píng)價(jià)理論模型與實(shí)證研究
- 工業(yè)自動(dòng)化技術(shù)實(shí)訓(xùn)指導(dǎo)
- 傳感器與自動(dòng)檢測(cè)
- 大數(shù)據(jù)導(dǎo)論
- Red Hat Enterprise Linux 5.0服務(wù)器構(gòu)建與故障排除
- FANUC工業(yè)機(jī)器人虛擬仿真教程
- Windows 7來(lái)了