- Mastering Predictive Analytics with scikit:learn and TensorFlow
- Alan Fontaine
- 106字
- 2021-07-23 16:42:25
Bagging model
Bagging is an ensemble learning model. Any estimator can be used with the bagging method. So, let's take a case where we use KNN, as shown in the following screenshot:
Using the n_estimators parameter, we can produce an ensemble of 15 individual estimators. As a result, this will produce 15 bootstrap samples of the training dataset, and then, in each of these samples, it will fit one of these KNN regressors with 20 neighbors. In the end, we will get the individual predictions by using the bagging method. The method that this algorithm uses for giving individual predictions is a majority vote.
推薦閱讀
- R Data Mining
- 自動控制原理
- Getting Started with MariaDB
- 讓每張照片都成為佳作的Photoshop后期技法
- Maya極速引擎:材質篇
- 數據挖掘方法及天體光譜挖掘技術
- Word 2007,Excel 2007辦公應用融會貫通
- Silverlight 2完美征程
- 案例解說Delphi典型控制應用
- 中老年人學電腦與上網
- PyTorch深度學習
- Flash CS3動畫制作融會貫通
- Hadoop大數據開發基礎
- Hands-On Data Analysis with Scala
- Building Virtual Pentesting Labs for Advanced Penetration Testing(Second Edition)