舉報

會員
Supervised Machine Learning with Python
Supervisedmachinelearningisusedinawiderangeofsectors(suchasfinance,onlineadvertising,andanalytics)becauseitallowsyoutotrainyoursystemtomakepricingpredictions,campaignadjustments,customerrecommendations,andmuchmorewhilethesystemself-adjustsandmakesdecisionsonitsown.Asaresult,it'scrucialtoknowhowamachine"learns"underthehood.Thisbookwillguideyouthroughtheimplementationandnuancesofmanypopularsupervisedmachinelearningalgorithmswhilefacilitatingadeepunderstandingalongtheway.You’llembarkonthisjourneywithaquickoverviewandseehowsupervisedmachinelearningdiffersfromunsupervisedlearning.Next,weexploreparametricmodelssuchaslinearandlogisticregression,non-parametricmethodssuchasdecisiontrees,andvariousclusteringtechniquestofacilitatedecision-makingandpredictions.Asweproceed,you'llworkhands-onwithrecommendersystems,whicharewidelyusedbyonlinecompaniestoincreaseuserinteractionandenrichshoppingpotential.Finally,you’llwrapupwithabriefforayintoneuralnetworksandtransferlearning.Bytheendofthisbook,you’llbeequippedwithhands-ontechniquesandwillhavegainedthepracticalknow-howyouneedtoquicklyandpowerfullyapplyalgorithmstonewproblems.
目錄(105章)
倒序
- coverpage
- Title Page
- Copyright and Credits
- Supervised Machine Learning with Python
- About Packt
- Why subscribe?
- Packt.com
- Contributor
- About the author
- Packt is searching for authors like you
- Preface
- Who this book is for
- What this book covers
- To get the most out of this book
- Download the example code files
- Download the color images
- Conventions used
- Get in touch
- Reviews
- First Step Towards Supervised Learning
- Technical requirements
- An example of supervised learning in action
- Logistic regression
- Setting up the environment
- Supervised learning
- Hill climbing and loss functions
- Loss functions
- Measuring the slope of a curve
- Measuring the slope of an Nd-curve
- Measuring the slope of multiple functions
- Hill climbing and descent
- Model evaluation and data splitting
- Out-of-sample versus in-sample evaluation
- Splitting made easy
- Summary
- Implementing Parametric Models
- Technical requirements
- Parametric models
- Finite-dimensional models
- The characteristics of parametric learning algorithms
- Parametric model example
- Implementing linear regression from scratch
- The BaseSimpleEstimator interface
- Logistic regression models
- The concept
- The math
- The logistic (sigmoid) transformation
- The algorithm
- Creating predictions
- Implementing logistic regression from scratch
- Example of logistic regression
- The pros and cons of parametric models
- Summary
- Working with Non-Parametric Models
- Technical requirements
- The bias/variance trade-off
- Error terms
- Error due to bias
- Error due to variance
- Learning curves
- Strategies for handling high bias
- Strategies for handling high variance
- Introduction to non-parametric models and decision trees
- Non-parametric learning
- Characteristics of non-parametric learning algorithms
- Is a model parametric or not?
- An intuitive example – decision tree
- Decision trees – an introduction
- How do decision trees make decisions?
- Decision trees
- Splitting a tree by hand
- If we split on x1
- If we split on x2
- Implementing a decision tree from scratch
- Classification tree
- Regression tree
- Various clustering methods
- What is clustering?
- Distance metrics
- KNN – introduction
- KNN – considerations
- A classic KNN algorithm
- Implementing KNNs from scratch
- KNN clustering
- Non-parametric models – pros/cons
- Pros of non-parametric models
- Cons of non-parametric models
- Which model to use?
- Summary
- Advanced Topics in Supervised Machine Learning
- Technical requirements
- Recommended systems and an introduction to collaborative filtering
- Item-to-item collaborative filtering
- Matrix factorization
- Matrix factorization in Python
- Limitations of ALS
- Content-based filtering
- Limitations of content-based systems
- Neural networks and deep learning
- Tips and tricks for training a neural network
- Neural networks
- Using transfer learning
- Summary
- Other Books You May Enjoy
- Leave a review - let other readers know what you think 更新時間:2021-06-24 14:01:20
推薦閱讀
- 大數據項目管理:從規劃到實現
- 腦動力:PHP函數速查效率手冊
- 來吧!帶你玩轉Excel VBA
- ServiceNow Cookbook
- Windows程序設計與架構
- 大數據技術與應用
- 悟透AutoCAD 2009案例自學手冊
- Linux嵌入式系統開發
- Photoshop行業應用基礎
- 手機游戲策劃設計
- 生成對抗網絡項目實戰
- Linux Shell Scripting Cookbook(Third Edition)
- Microsoft Dynamics CRM 2013 Marketing Automation
- 計算機應用基礎學習指導與練習(Windows XP+Office 2003)
- Win 7二十一
- PowerPoint 2003中文演示文稿5日通
- Learning OpenShift
- 數據結構與算法(C++語言版)
- 歐姆龍CP1H型PLC編程與應用
- TensorFlow 2.0卷積神經網絡實戰
- 傳感器與檢測技術
- 開源技術選型手冊
- PyTorch 1.x Reinforcement Learning Cookbook
- 嵌入式系統原理與應用設計
- 深度學習:語音識別技術實踐
- Flink基礎教程
- OpenGL 4 Shading Language Cookbook(Second Edition)
- Teradata Cookbook
- Puppet 4.10 Beginner’s Guide(Second Edition)
- 用戶體驗設計