- Supervised Machine Learning with Python
- Taylor Smith
- 91字
- 2021-06-24 14:01:05
Hill climbing and loss functions
In the last section, we got comfortable with the idea of supervised machine learning. Now, we will learn how exactly a machine learns underneath the hood. This section is going to examine a common optimization technique used by many machine learning algorithms, called hill climbing. It is predicated on the fact that each problem has an ideal state and a way to measure how close or how far we are from that. It is important to note that not all machine learning algorithms use this approach.
推薦閱讀
- 機(jī)器學(xué)習(xí)實(shí)戰(zhàn):基于Sophon平臺(tái)的機(jī)器學(xué)習(xí)理論與實(shí)踐
- 計(jì)算機(jī)應(yīng)用
- 輕松學(xué)C語言
- Dreamweaver CS3網(wǎng)頁制作融會(huì)貫通
- 網(wǎng)絡(luò)綜合布線技術(shù)
- Expert AWS Development
- Spark大數(shù)據(jù)技術(shù)與應(yīng)用
- Moodle Course Design Best Practices
- 基于Xilinx ISE的FPAG/CPLD設(shè)計(jì)與應(yīng)用
- 精通數(shù)據(jù)科學(xué):從線性回歸到深度學(xué)習(xí)
- 基于神經(jīng)網(wǎng)絡(luò)的監(jiān)督和半監(jiān)督學(xué)習(xí)方法與遙感圖像智能解譯
- 深度學(xué)習(xí)與目標(biāo)檢測(cè)
- 從零開始學(xué)Java Web開發(fā)
- 青少年VEX IQ機(jī)器人實(shí)訓(xùn)課程(初級(jí))
- 計(jì)算機(jī)辦公應(yīng)用培訓(xùn)教程