In this chapter, we will define what it means to evaluate a model, best practices for gauging the advocacy of a model, how to split your data, and several considerations that you'll have to make when preparing your split.
It is important to understand some core best practices of machine learning. One of our primary tasks as ML practitioners is to create a model that is effective for making predictions on new data. But how do we know that a model is good? If you recall from the previous section, we defined supervised learning as simply a task that learns a function from labelled data such that we can approximate the target of the new data. Therefore, we can test our model's effectiveness. We can determine how it performs on data that is never seen—just like it's taking a test.