官术网_书友最值得收藏!

參考文獻

1.鮑潤賢.中華影像醫學·乳腺卷[M]. 2版.北京:人民衛生出版社,2010:78-85,86-96.
2.Gur D,Abrams GS,Chough DM,et al. Digital breast tomosynthesis:observer performance study[J]. AJR,2009,193:586-591.
3.Hakiml CM,Chough DM,Ganott MA,et al. Digital breast tomosynthesis in the diagnostic environment:a subjective side-by-side review[J]. AJR,2010,195:172-176.
4.Wallis MG,Moa E,Zanca F,et al. Two-view and singleview tomosynthesis versus full-field digital mammography:high-resolution X-ray imaging observer study[J]. Radiology,2012,262(3):788-796.
5.Dang PA,Freer PE,Humphery KL,et al. Addition of tomosynthesis to conventional digital mammography:effect on image interpretation time of screening examinations[J].Radiology,2014,270(1):49-56.
6.邊甜甜,林青,李麗麗,等.對比數字乳腺斷層合成與乳腺X線攝影對致密型乳腺內腫塊的診斷價值[J].中華放射學雜志,2015,49(7):483-487.
7.張云燕,顧雅佳,彭衛軍,等.數字乳腺斷層合成X線成像結合合成二維圖像對乳腺疾病的診斷價值[J].中華放射學雜志,2016,50(11):833-837.
8.Hodgson R,Heywang-Kobrunner SH,Harvey SC,et al. Systematic review of 3D mammography for breast cancer screening[J]. The Breast,2016(27):52-61.
9.楊蕾,李靜,周純武.數字乳腺斷層融合X線成像對乳腺病變的診斷價值[J].中華腫瘤雜志,2017,39(1):33-38.
10.Hawley JR,Kang-Chapman JK,Bonnet SE,et al. Diagnostic accuracy of digital breast tomosynthesis in the evaluating of palpable breast abnormalities[J]. Academic Radiology,2018,25(3);297-304.
11.Cheung YC,Lin YC,Wan YL,et al. Diagnostic performance of dual energy contrast-enhanced subtracted mammography in dense breasts compared to mammography alone:interobserver blind-reading analysis[J]. Eur Radiol,2014,24(10):2394-2403.
12.姜婷婷,張盛箭,李瑞敏,等.對比增強能譜X線攝影對乳腺疾病的診斷價值[J].中華放射學雜志,2017,51(4):273-278.
13.馮清華,羅良平,余江秀.實時組織彈性成像對乳腺良、惡性腫塊診斷價值的Meta分析[J].中國醫學影像技術,2011,27(2):321-325.
14.中華醫學會放射學分會乳腺學組.乳腺MRI檢查共識[J].中華放射學雜志,2014,48(9)723-725.
15.趙莉蕓,周純武,李靜,等.動態增強MRI半定量參數預測乳腺癌新輔助化療療效[J].中國醫學影像技術,2013,29(11):1751-1755.
16.Liu C,Liang C,Liu Z,et al. Intravoxel incoherent motion(IVIM)in evaluation of breast lesions:comparison with conventional DWI[J]. Eur J Radiol,2013,82(12):e782-789.
17.Lee YJ,Kim SH,Kang BJ,et al. Incoherent motion(IVIM)-derived parameters in diffusion-weighted MRI:Associations with prognostic factors in invasive ductal carcinoma[J]. J Magn Reson Imaging. 2016,45(5):1394-1406.
18.車樹楠,崔曉琳,李靜,等.MR擴散加權成像體素內不相干運動模型對于乳腺良惡性病變診斷價值的研究[J].磁共振成像,2015,6(7):506-512.
19.Sun K,Chen X,Chai W,et al. Breast Cancer:Diffusion Kurtosis MR Imaging-Diagnostic Accuracy and Correlation with Clinical-Pathologic Factors[J]. Radiology,2015,277(1):46-55.
20.柯承露,車樹楠,李靜.擴散峰度成像鑒別診斷乳腺良惡性病變的價值及聯合擴散加權成像的診斷效能[J].中華放射學雜志,2018,52(8):593-597.
21.柯承露,李靜.IVIM及DKI在乳腺病變的臨床研究進展 [J].磁共振成像,2018;9(2):153-156.
22.Lambin P,Rios-Velazquez E,Leijenaar R,et al. Radiomics:extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer,2012,48(4):441.
23.Aboutalib SS,Mohamed AA,Berg WA,et al. Deep Learning to Distinguish Recalled but Benign Mammography Images in Breast Cancer Screening[J]. Clin Cancer Res,2018,24(23):5902-5909.
24.Xu X,Bao L,Tan Y,et al. 1000-Case Reader Study of Radiologists' Performance in Interpretation of Automated Breast Volume Scanner Images with a Computer-Aided Detection System[J]. Ultrasound Med Biol,2018,44(8):1694-1702.
主站蜘蛛池模板: 郯城县| 宜春市| 淮安市| 囊谦县| 富裕县| 云安县| 江孜县| 石门县| 汤原县| 云阳县| 松潘县| 新野县| 永和县| 黄大仙区| 瓦房店市| 涞源县| 鄂伦春自治旗| 龙陵县| 永川市| 龙山县| 武强县| 汕尾市| 吴江市| 南皮县| 彭州市| 宁国市| 渝中区| 太仆寺旗| 曲靖市| 宝清县| 合山市| 黔东| 巴东县| 乌苏市| 鄂伦春自治旗| 吴忠市| 达日县| 东辽县| 拉萨市| 阜新| 东台市|