官术网_书友最值得收藏!

參考文獻

1.鮑潤賢.中華影像醫(yī)學·乳腺卷[M]. 2版.北京:人民衛(wèi)生出版社,2010:78-85,86-96.
2.Gur D,Abrams GS,Chough DM,et al. Digital breast tomosynthesis:observer performance study[J]. AJR,2009,193:586-591.
3.Hakiml CM,Chough DM,Ganott MA,et al. Digital breast tomosynthesis in the diagnostic environment:a subjective side-by-side review[J]. AJR,2010,195:172-176.
4.Wallis MG,Moa E,Zanca F,et al. Two-view and singleview tomosynthesis versus full-field digital mammography:high-resolution X-ray imaging observer study[J]. Radiology,2012,262(3):788-796.
5.Dang PA,F(xiàn)reer PE,Humphery KL,et al. Addition of tomosynthesis to conventional digital mammography:effect on image interpretation time of screening examinations[J].Radiology,2014,270(1):49-56.
6.邊甜甜,林青,李麗麗,等.對比數(shù)字乳腺斷層合成與乳腺X線攝影對致密型乳腺內腫塊的診斷價值[J].中華放射學雜志,2015,49(7):483-487.
7.張云燕,顧雅佳,彭衛(wèi)軍,等.數(shù)字乳腺斷層合成X線成像結合合成二維圖像對乳腺疾病的診斷價值[J].中華放射學雜志,2016,50(11):833-837.
8.Hodgson R,Heywang-Kobrunner SH,Harvey SC,et al. Systematic review of 3D mammography for breast cancer screening[J]. The Breast,2016(27):52-61.
9.楊蕾,李靜,周純武.數(shù)字乳腺斷層融合X線成像對乳腺病變的診斷價值[J].中華腫瘤雜志,2017,39(1):33-38.
10.Hawley JR,Kang-Chapman JK,Bonnet SE,et al. Diagnostic accuracy of digital breast tomosynthesis in the evaluating of palpable breast abnormalities[J]. Academic Radiology,2018,25(3);297-304.
11.Cheung YC,Lin YC,Wan YL,et al. Diagnostic performance of dual energy contrast-enhanced subtracted mammography in dense breasts compared to mammography alone:interobserver blind-reading analysis[J]. Eur Radiol,2014,24(10):2394-2403.
12.姜婷婷,張盛箭,李瑞敏,等.對比增強能譜X線攝影對乳腺疾病的診斷價值[J].中華放射學雜志,2017,51(4):273-278.
13.馮清華,羅良平,余江秀.實時組織彈性成像對乳腺良、惡性腫塊診斷價值的Meta分析[J].中國醫(yī)學影像技術,2011,27(2):321-325.
14.中華醫(yī)學會放射學分會乳腺學組.乳腺MRI檢查共識[J].中華放射學雜志,2014,48(9)723-725.
15.趙莉蕓,周純武,李靜,等.動態(tài)增強MRI半定量參數(shù)預測乳腺癌新輔助化療療效[J].中國醫(yī)學影像技術,2013,29(11):1751-1755.
16.Liu C,Liang C,Liu Z,et al. Intravoxel incoherent motion(IVIM)in evaluation of breast lesions:comparison with conventional DWI[J]. Eur J Radiol,2013,82(12):e782-789.
17.Lee YJ,Kim SH,Kang BJ,et al. Incoherent motion(IVIM)-derived parameters in diffusion-weighted MRI:Associations with prognostic factors in invasive ductal carcinoma[J]. J Magn Reson Imaging. 2016,45(5):1394-1406.
18.車樹楠,崔曉琳,李靜,等.MR擴散加權成像體素內不相干運動模型對于乳腺良惡性病變診斷價值的研究[J].磁共振成像,2015,6(7):506-512.
19.Sun K,Chen X,Chai W,et al. Breast Cancer:Diffusion Kurtosis MR Imaging-Diagnostic Accuracy and Correlation with Clinical-Pathologic Factors[J]. Radiology,2015,277(1):46-55.
20.柯承露,車樹楠,李靜.擴散峰度成像鑒別診斷乳腺良惡性病變的價值及聯(lián)合擴散加權成像的診斷效能[J].中華放射學雜志,2018,52(8):593-597.
21.柯承露,李靜.IVIM及DKI在乳腺病變的臨床研究進展 [J].磁共振成像,2018;9(2):153-156.
22.Lambin P,Rios-Velazquez E,Leijenaar R,et al. Radiomics:extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer,2012,48(4):441.
23.Aboutalib SS,Mohamed AA,Berg WA,et al. Deep Learning to Distinguish Recalled but Benign Mammography Images in Breast Cancer Screening[J]. Clin Cancer Res,2018,24(23):5902-5909.
24.Xu X,Bao L,Tan Y,et al. 1000-Case Reader Study of Radiologists' Performance in Interpretation of Automated Breast Volume Scanner Images with a Computer-Aided Detection System[J]. Ultrasound Med Biol,2018,44(8):1694-1702.
主站蜘蛛池模板: 民丰县| 贺州市| 恩施市| 苍梧县| 延安市| 青龙| 汕尾市| 营山县| 长岛县| 磐安县| 万安县| 枣庄市| 铅山县| 蚌埠市| 汝城县| 四子王旗| 普宁市| 奇台县| 上饶市| 新野县| 布拖县| 馆陶县| 沧州市| 秦皇岛市| 漳浦县| 寿阳县| 黎城县| 崇明县| 高雄市| 大方县| 内乡县| 沙湾县| 绥阳县| 丽水市| 兴安县| 阿荣旗| 高陵县| 新郑市| 桦甸市| 灵川县| 班戈县|