官术网_书友最值得收藏!

Viewing a matrix of scatterplots

If you don't have many variables in your dataset, it is a good idea to view all the possible scatterplots for your data. You can do this with one function call from either seaborn or pandas. These functions display a matrix of plots with kernel density estimation plots or histograms on the diagonal.

How to do it...

  1. Imports the following:
    import pandas as pd
    from dautil import data
    from dautil import ts
    import matplotlib.pyplot as plt
    import seaborn as sns
    import matplotlib as mpl
  2. Load the weather data with the following lines:
    df = data.Weather.load()
    df = ts.groupby_yday(df).mean()
    df.columns = [data.Weather.get_header(c) for c in df.columns]
  3. Plot with the Seaborn pairplot() function, which plots histograms on the diagonal by default:
    %matplotlib inline
    
    # Seaborn plotting, issues due to NaNs
    sns.pairplot(df.fillna(0))

    The following plots are the result:

  4. Plot similarly with the pandas scatter_matrix() function and request kernel density estimation plots on the diagonal:
    sns.set({'figure.figsize': '16, 12'})
    mpl.rcParams['axes.linewidth'] = 9
    mpl.rcParams['lines.linewidth'] = 2
    plots = pd.scatter_matrix(df, marker='o', diagonal='kde')
    plt.show()

Refer to the following plots for the end result:

The complete code is available in the scatter_matrix.ipynb file in this book's code bundle.

主站蜘蛛池模板: 谢通门县| 镇安县| 临澧县| 墨江| 清水县| 翁源县| 济阳县| 彩票| 丹巴县| 明溪县| 绥中县| 芷江| 年辖:市辖区| 共和县| 渝中区| 家居| 安福县| 泾川县| 湟源县| 大丰市| 南部县| 成安县| 平顶山市| 环江| 乌拉特前旗| 河池市| 马山县| 华阴市| 磐安县| 名山县| 丰原市| 海林市| 阳新县| 恭城| 拜城县| 武川县| 搜索| 玛曲县| 栾城县| 新河县| 克拉玛依市|