官术网_书友最值得收藏!

Interacting with IPython Notebook widgets

Interactive IPython notebook widgets are, at the time of writing (July 2015), an experimental feature. I, and as far as I know, many other people, hope that this feature will remain. In a nutshell, the widgets let you select values as you would with HTML forms. This includes sliders, drop-down boxes, and check boxes. As you can read, these widgets are very convenient for visualizing the weather data I introduced in Chapter 1, Laying the Foundation for Reproducible Data Analysis.

How to do it...

  1. Import the following:
    import seaborn as sns
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    from IPython.html.widgets import interact
    from dautil import data
    from dautil import ts
  2. Load the data and request inline plots:
    %matplotlib inline
    df = data.Weather.load()
  3. Define the following function, which displays bubble plots:
    def plot_data(x='TEMP', y='RAIN', z='WIND_SPEED', f='A', size=10, cmap='Blues'):
        dfx = df[x].resample(f)
        dfy = df[y].resample(f)
        dfz = df[z].resample(f)
        
        bubbles = (dfz - dfz.min())/(dfz.max() - dfz.min())
        years = dfz.index.year
        sc = plt.scatter(dfx, dfy, s= size * bubbles + 9, c = years,
                    cmap=cmap, label=data.Weather.get_header(z), alpha=0.5)
        plt.colorbar(sc, label='Year')
        
        freqs = {'A': 'Annual', 'M': 'Monthly', 'D': 'Daily'}
        plt.title(freqs[f] + ' Averages')
        plt.xlabel(data.Weather.get_header(x))
        plt.ylabel(data.Weather.get_header(y))
        plt.legend(loc='best')
  4. Call the function we just defined with the following code:
    vars = df.columns.tolist()
    freqs = ('A', 'M', 'D')
    cmaps = [cmap for cmap in plt.cm.datad if not cmap.endswith("_r")]
    cmaps.sort()
    interact(plot_data, x=vars, y=vars, z=vars, f=freqs, size=(100,700), cmap=cmaps)
  5. This is one of the recipes where you really should play with the code to understand how it works. The following is an example bubble plot:
  6. Define another function (actually, it has the same name), but this time the function groups the data by day of year or month:
    def plot_data(x='TEMP', y='RAIN', z='WIND_SPEED', groupby='ts.groupby_yday', size=10, cmap='Blues'):
        if groupby == 'ts.groupby_yday':
            groupby = ts.groupby_yday
        elif groupby == 'ts.groupby_month':
            groupby = ts.groupby_month
        else:
            raise AssertionError('Unknown groupby ' + groupby)
            
        dfx = groupby(df[x]).mean()
        dfy = groupby(df[y]).mean()
        dfz = groupby(df[z]).mean()
        
        bubbles = (dfz - dfz.min())/(dfz.max() - dfz.min())
        colors = dfx.index.values
        sc = plt.scatter(dfx, dfy, s= size * bubbles + 9, c = colors,
                    cmap=cmap, label=data.Weather.get_header(z), alpha=0.5)
        plt.colorbar(sc, label='Day of Year')
        
        by_dict = {ts.groupby_yday: 'Day of Year', ts.groupby_month: 'Month'}
        plt.title('Grouped by ' + by_dict[groupby])
        plt.xlabel(data.Weather.get_header(x))
        plt.ylabel(data.Weather.get_header(y))
        plt.legend(loc='best')
  7. Call this function with the following snippet:
    groupbys = ('ts.groupby_yday', 'ts.groupby_month')
    interact(plot_data, x=vars, y=vars, z=vars, groupby=groupbys, size=(100,700), cmap=cmaps)

Refer to the following plot for the end result:

My first impression of this plot is that the temperature and wind speed seem to be correlated. The source code is in the Interactive.ipynb file in this book's code bundle.

See also

主站蜘蛛池模板: 广灵县| 高碑店市| 和硕县| 巴南区| 沿河| 右玉县| 贡嘎县| 巴马| 云林县| 息烽县| 博兴县| 扎囊县| 台北市| 静乐县| 新民市| 仁布县| 壶关县| 英超| 两当县| 修武县| 东宁县| 贵定县| 岳普湖县| 伊吾县| 沽源县| 胶州市| 台州市| 民权县| 蒲江县| 边坝县| 和田县| 洱源县| 宁河县| 朝阳县| 胶州市| 图片| 南和县| 澜沧| 东丽区| 新乐市| 合山市|