官术网_书友最值得收藏!

  • R Deep Learning Cookbook
  • Dr. PKS Prakash Achyutuni Sri Krishna Rao
  • 83字
  • 2021-07-02 20:49:12

How to do it...

The data is imported using a standard function from R, as shown in the following code.

  1. The data is imported using the read.csv file and transformed into the matrix format followed by selecting the features used to model as defined in xFeatures and yFeatures. The next step in TensorFlow is to set up a graph to run optimization:
# Loading input and test data
xFeatures = c("Temperature", "Humidity", "Light", "CO2", "HumidityRatio")
yFeatures = "Occupancy"
occupancy_train <-as.matrix(read.csv("datatraining.txt",stringsAsFactors = T))
occupancy_test <- as.matrix(read.csv("datatest.txt",stringsAsFactors = T))

# subset features for modeling and transform to numeric values
occupancy_train<-apply(occupancy_train[, c(xFeatures, yFeatures)], 2, FUN=as.numeric)
occupancy_test<-apply(occupancy_test[, c(xFeatures, yFeatures)], 2, FUN=as.numeric)

# Data dimensions
nFeatures<-length(xFeatures)
nRow<-nrow(occupancy_train)
  1. Before setting up the graph, let's reset the graph using the following command:
# Reset the graph
tf$reset_default_graph()
  1. Additionally, let's start an interactive session as it will allow us to execute variables without referring to the session-to-session object:
# Starting session as interactive session
sess<-tf$InteractiveSession()
  1. Define the logistic regression model in TensorFlow:
# Setting-up Logistic regression graph
x <- tf$constant(unlist(occupancy_train[, xFeatures]), shape=c(nRow, nFeatures), dtype=np$float32) #
W <- tf$Variable(tf$random_uniform(shape(nFeatures, 1L)))
b <- tf$Variable(tf$zeros(shape(1L)))
y <- tf$matmul(x, W) + b
  1. The input feature x is defined as a constant as it will be an input to the system. The weight W and bias b are defined as variables that will be optimized during the optimization process. The y is set up as a symbolic representation between x, W, and b. The weight W is set up to initialize random uniform distribution and b is assigned the value zero.
  2. The next step is to set up the cost function for logistic regression:
# Setting-up cost function and optimizer
y_ <- tf$constant(unlist(occupancy_train[, yFeatures]), dtype="float32", shape=c(nRow, 1L))
cross_entropy<-tf$reduce_mean(tf$nn$sigmoid_cross_entropy_with_logits(labels=y_, logits=y, name="cross_entropy"))
optimizer <- tf$train$GradientDescentOptimizer(0.15)$minimize(cross_entropy)

The variable y_ is the response variable. Logistic regression is set up using cross entropy as the loss function. The loss function is passed to the gradient descent optimizer with a learning rate of 0.15. Before running the optimization, initialize the global variables:

# Start a session
init <- tf$global_variables_initializer()
sess$run(init)
  1. Execute the gradient descent algorithm for the optimization of weights using cross entropy as the loss function:
# Running optimization 
for (step in 1:5000) {
sess$run(optimizer)
if (step %% 20== 0)
cat(step, "-", sess$run(W), sess$run(b), "==>", sess$run(cross_entropy), "n")
}
主站蜘蛛池模板: 桐乡市| 英吉沙县| 田东县| 招远市| 霍林郭勒市| 凤阳县| 绥阳县| 景泰县| 太仓市| 宜昌市| 正安县| 改则县| 庄浪县| 黄陵县| 大化| 台北市| 朝阳县| 阳泉市| 沭阳县| 延寿县| 常熟市| 晋州市| 延川县| 沅江市| 普兰店市| 霸州市| 昌都县| 旌德县| 安陆市| 南丰县| 东台市| 馆陶县| 绥宁县| 巴林右旗| 通辽市| 贵港市| 邳州市| 宁陕县| 临朐县| 金昌市| 安平县|