官术网_书友最值得收藏!

The LeNet-5 convolutional neural network

Architecture of LeNet-5, from Gradient-based Learning Applied to Document Recognition by LeCunn et al.(http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf)

LeNet-5 is a seven-level convolutional neural network, published by the team comprising of Yann LeCunn, Yoshua Bengio, Leon Bottou and Patrick Haffner in 1998 to classify digits, which was used by banks to recognize handwritten numbers on checks. The layers are ordered as:

  • Input image | Convolutional Layer 1(ReLU) | Pooling 1 |Convolutional Layer 2(ReLU) |Pooling 2 |Fully Connected (ReLU) 1 | Fully Connected 2 | Output
  • LeNet-5 had remarkable results, but the ability to process higher-resolution images required more convolutional layers, such as in AlexNet, VGG-Net, and Inception models.
主站蜘蛛池模板: 建瓯市| 西贡区| 平乡县| 疏附县| 扬中市| 灌阳县| 宝鸡市| 图木舒克市| 松潘县| 同心县| 木里| 三江| 嘉黎县| 富宁县| 广东省| 伊金霍洛旗| SHOW| 朝阳区| 青海省| 聊城市| 赤峰市| 彭水| 泸州市| 泉州市| 集贤县| 扎鲁特旗| 岢岚县| 尉犁县| 五华县| 五家渠市| 凤庆县| 缙云县| 江华| 通山县| 永寿县| 肇庆市| 保山市| 和顺县| 太康县| 固原市| 临朐县|