官术网_书友最值得收藏!

The LeNet-5 convolutional neural network

Architecture of LeNet-5, from Gradient-based Learning Applied to Document Recognition by LeCunn et al.(http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf)

LeNet-5 is a seven-level convolutional neural network, published by the team comprising of Yann LeCunn, Yoshua Bengio, Leon Bottou and Patrick Haffner in 1998 to classify digits, which was used by banks to recognize handwritten numbers on checks. The layers are ordered as:

  • Input image | Convolutional Layer 1(ReLU) | Pooling 1 |Convolutional Layer 2(ReLU) |Pooling 2 |Fully Connected (ReLU) 1 | Fully Connected 2 | Output
  • LeNet-5 had remarkable results, but the ability to process higher-resolution images required more convolutional layers, such as in AlexNet, VGG-Net, and Inception models.
主站蜘蛛池模板: 沁阳市| 酒泉市| 中方县| 武胜县| 略阳县| 兴山县| 清远市| 犍为县| 吴川市| 祁东县| 龙江县| 永丰县| 柳江县| 乌兰浩特市| 梅州市| 巍山| 永德县| 比如县| 宁安市| 西充县| 三台县| 靖宇县| 巴东县| 崇左市| 海南省| 汶上县| 大化| 巴彦淖尔市| 中西区| 赤水市| 昌黎县| 顺义区| 通渭县| 四川省| 北宁市| 读书| 湛江市| 灵石县| 锦屏县| 安丘市| 米泉市|