官术网_书友最值得收藏!

  • Matplotlib for Python Developers
  • Aldrin Yim Claire Chung Allen Yu
  • 240字
  • 2021-08-27 18:48:19

pandas DataFrame

You may often see df appearing on Python-based data science resources and literature. It is a conventional way to denote the pandas DataFrame structure. pandas lets us perform the otherwise tedious operations on tables (data frames) with simple commands, such as dropna(), merge(), pivot(), and set_index().

pandas is designed to streamline handling processes of common data types, such as time series. While NumPy is more specialized in mathematical calculations, pandas has built-in string manipulation functions and also allows custom functions to be applied to each cell via apply().

Before use, we import the module with the conventional shorthand as:

pd.DataFrame(my_list_or_array)

To read data from existing files, just use the following:

pd.read_csv()

For tab-delimited files, just add '\t' as the separator: 

pd.read_csv(sep='\t')

pandas supports data import from a wide range of common file structures for data handling and processing, from pd.read_xlsx() for Excel and pd.read_sql_query() for SQL databases to the more recently popular JSON, HDF5, and Google BigQuery.

pandas provides a collection of handy operations for data manipulation and is considered a must-have in a Python data scientist's or developer's toolbox.

We encourage our readers to seek resources and books on our Mapt platform to get a better and intimate understanding of the pandas library usage. 

To fully understand and utilize the functionalities, you may want to read more from the official documentation: 

http://pandas.pydata.org/pandas-docs/stable/ 

主站蜘蛛池模板: 边坝县| 黑山县| 郴州市| 托里县| 府谷县| 凯里市| 泾阳县| 贺州市| 鹿邑县| 柳州市| 洛隆县| 凤台县| 临漳县| 宾川县| 彩票| 连州市| 通辽市| 个旧市| 安阳市| 芷江| 萍乡市| 台东县| 汝南县| 库伦旗| 岳池县| 东乌珠穆沁旗| 石楼县| 武冈市| 高州市| 海门市| 武鸣县| 广河县| 东海县| 宁津县| 西和县| 横山县| 嵩明县| 宜兰市| 黄山市| 三门县| 茌平县|