官术网_书友最值得收藏!

NumPy array

NumPy allows the creation of n-dimensional arrays, which is where the name of the data type, numpy.ndarraycomes from. It handles many sophisticated scientific and matrix operations. It provides many linear algebra and random number functionalities.

NumPy lies at the core of many calculations that computationally enable Matplotlib and many other Python packages. It is therefore a dependency for many common packages and often comes along with Python distributions. For instance, it provides the fundamental data structure for SciPy, a package that handles statistical calculations useful in science and many other areas.

To import NumPy, input this:

import numpy as np

To create a NumPy array from lists, use the following:

x = np.array([2,3,1,0])

You can also create non-integral arithmetic series with NumPy by using np.linspace(start,stop,number)

See the following example:

In [1]: np.linspace(3,5,20)
Out[1]: array([ 3.        ,  3.10526316,  3.21052632,  3.31578947,  3.42105263,
        3.52631579,  3.63157895,  3.73684211,  3.84210526,  3.94736842,
        4.05263158,  4.15789474,  4.26315789,  4.36842105,  4.47368421,
        4.57894737,  4.68421053,  4.78947368,  4.89473684,  5.        ])

Matrix operations can be applied across NumPy arrays. Here is an example of multiplying two arrays:

In [2]: a = np.array([1, 2, 1])
In [3]: b = np.array([2, 3, 8])
In [4]: a*b
Out[4]: array([2, 6, 8])
主站蜘蛛池模板: 文昌市| 论坛| 海兴县| 泰来县| 嘉鱼县| 永城市| 涟源市| 永修县| 辽中县| 观塘区| 东辽县| 海安县| 云安县| 驻马店市| 泌阳县| 芜湖市| 堆龙德庆县| 托克逊县| 图木舒克市| 广河县| 读书| 武山县| 临汾市| 连山| 蒲城县| 和政县| 郎溪县| 宁安市| 常山县| 广昌县| 琼中| 开封县| 丰顺县| 南京市| 江城| 漠河县| 黔西县| 沅陵县| 中阳县| 菏泽市| 太谷县|