- Matplotlib for Python Developers
- Aldrin Yim Claire Chung Allen Yu
- 203字
- 2021-08-27 18:48:19
NumPy array
NumPy allows the creation of n-dimensional arrays, which is where the name of the data type, numpy.ndarray, comes from. It handles many sophisticated scientific and matrix operations. It provides many linear algebra and random number functionalities.
NumPy lies at the core of many calculations that computationally enable Matplotlib and many other Python packages. It is therefore a dependency for many common packages and often comes along with Python distributions. For instance, it provides the fundamental data structure for SciPy, a package that handles statistical calculations useful in science and many other areas.
To import NumPy, input this:
import numpy as np
To create a NumPy array from lists, use the following:
x = np.array([2,3,1,0])
You can also create non-integral arithmetic series with NumPy by using np.linspace(start,stop,number).
See the following example:
In [1]: np.linspace(3,5,20) Out[1]: array([ 3. , 3.10526316, 3.21052632, 3.31578947, 3.42105263, 3.52631579, 3.63157895, 3.73684211, 3.84210526, 3.94736842, 4.05263158, 4.15789474, 4.26315789, 4.36842105, 4.47368421, 4.57894737, 4.68421053, 4.78947368, 4.89473684, 5. ])
Matrix operations can be applied across NumPy arrays. Here is an example of multiplying two arrays:
In [2]: a = np.array([1, 2, 1])
In [3]: b = np.array([2, 3, 8])
In [4]: a*b
Out[4]: array([2, 6, 8])
- Java語言程序設(shè)計
- 復(fù)雜軟件設(shè)計之道:領(lǐng)域驅(qū)動設(shè)計全面解析與實戰(zhàn)
- SoapUI Cookbook
- Learning Bayesian Models with R
- 云原生Spring實戰(zhàn)
- 前端架構(gòu):從入門到微前端
- Python Geospatial Development(Second Edition)
- SQL基礎(chǔ)教程(第2版)
- Python+Tableau數(shù)據(jù)可視化之美
- 軟件項目管理實用教程
- Python大學(xué)實用教程
- Struts 2.x權(quán)威指南
- 計算機(jī)應(yīng)用技能實訓(xùn)教程
- Python 快速入門(第3版)
- SAS編程演義