官术网_书友最值得收藏!

Support vector machines

Support vector machines, abbreviated popularly as SVM, are an important class of machine learning techniques. Theoretically, SVM can take an infinite number of features/covariates and build the appropriate classification or regression SVMs.

SVM for hypothyroid classification

The svm function from the e1071 package will be useful for building an SVM classifier on the Hypothyroid dataset. Following the usual practice, we have the following output in the R session:

> SVM_fit <- svm(HT2_Formula,data=HT2_Train)
> SVM_predict <- predict(SVM_fit,newdata=HT2_TestX,type="class")
> SVM_Accuracy <- sum(SVM_predict==HT2_TestY)/nte
> SVM_Accuracy
[1] 0.9842767296

The SVM technique gives us an accuracy of 98.43%, which is the second best of the models set up thus far.

In the next section, we will run each of the five classification models for the Waveform, German Credit, Iris, and Pima Indians Diabetes problem datasets.

主站蜘蛛池模板: 桓台县| 巴青县| 庆元县| 锦州市| 丹东市| 石家庄市| 天祝| 凤庆县| 乌兰浩特市| 东阿县| 灵石县| 荣昌县| 多伦县| 余庆县| 宁国市| 乳山市| 萨嘎县| 台湾省| 清流县| 青海省| 平江县| 珲春市| 吉首市| 南昌县| 上思县| 高邑县| 松原市| 阳城县| 香河县| 阳曲县| 麟游县| 鹤峰县| 阳西县| 洞口县| 沙洋县| 平罗县| 邵阳县| 楚雄市| 凤庆县| 敦煌市| 临清市|