- Python Reinforcement Learning Projects
- Sean Saito Yang Wenzhuo Rajalingappaa Shanmugamani
- 147字
- 2021-07-23 19:05:06
Installation
The primary interface of the gym is used through Python. Once you have Python3 in an environment with the pip installer, the gym can be installed as follows:
sudo pip install gym
Advanced users that want to modify the source can compile from the source by using the following commands:
git clone https://github.com/openai/gym
cd gym
pip install -e .
A new environment can be added to the gym with the source code. There are several environments that need more dependencies. For macOS, install the dependencies by using the following command:
brew install cmake boost boost-python sdl2 swig wget
For Ubuntu, use the following commands:
apt-get install -y python-numpy python-dev cmake zlib1g-dev libjpeg-dev xvfb libav-tools xorg-dev python-opengl libboost-all-dev libsdl2-dev swig
Once the dependencies are there, install the complete gym as follows:
pip install 'gym[all]'
This will install most of the environments that are required.
推薦閱讀
- 電氣自動化專業英語(第3版)
- Word 2000、Excel 2000、PowerPoint 2000上機指導與練習
- MCSA Windows Server 2016 Certification Guide:Exam 70-741
- PyTorch深度學習實戰
- JMAG電機電磁仿真分析與實例解析
- STM32G4入門與電機控制實戰:基于X-CUBE-MCSDK的無刷直流電機與永磁同步電機控制實現
- 西門子S7-200 SMART PLC實例指導學與用
- Visual C++編程全能詞典
- Implementing AWS:Design,Build,and Manage your Infrastructure
- 悟透JavaScript
- 工業機器人維護與保養
- R Data Analysis Projects
- 漢字錄入技能訓練
- 微機組裝與維護教程
- 工業機器人應用系統三維建模