- Python Reinforcement Learning Projects
- Sean Saito Yang Wenzhuo Rajalingappaa Shanmugamani
- 119字
- 2021-07-23 19:05:06
Gym
Gym provides a toolkit to benchmark AI-based tasks. The interface is easy to use. The goal is to enable reproducible research. Visit https://gym.openai.com for more information about Gym. An agent can be taught inside of the gym, and learn activities such as playing games or walking. An environment is a library of problems.
The standard set of problems presented in the gym are as follows:
- CartPole
- Pendulum
- Space Invaders
- Lunar Lander
- Ant
- Mountain Car
- Acrobot
- Car Racing
- Bipedal Walker
Any algorithm can work out in the gym by training for these activities. All of the problems have the same interface. Therefore, any general reinforcement learning algorithm can be used through the interface.
推薦閱讀
- Oracle SOA Governance 11g Implementation
- Python Algorithmic Trading Cookbook
- 大型數據庫管理系統技術、應用與實例分析:SQL Server 2005
- 西門子S7-200 SMART PLC實例指導學與用
- 精通數據科學算法
- Troubleshooting OpenVPN
- 激光選區熔化3D打印技術
- 網絡管理工具實用詳解
- LMMS:A Complete Guide to Dance Music Production Beginner's Guide
- Visual Studio 2010 (C#) Windows數據庫項目開發
- C++程序設計基礎(上)
- 空間機器人智能感知技術
- Moodle 2.0 Course Conversion(Second Edition)
- WPF專業編程指南
- 分布式Java應用