- Machine Learning in Java
- AshishSingh Bhatia Bostjan Kaluza
- 154字
- 2021-06-10 19:29:59
Probabilistic classifiers
Given a set of attribute values, a probabilistic classifier is able to predict a distribution over a set of classes, rather than an exact class. This can be used as a degree of certainty; that is, how sure the classifier is about its prediction. The most basic classifier is Naive Bayes, which happens to be the optimal classifier if, and only if, the attributes are conditionally independent. Unfortunately, this is extremely rare in practice.
There is an enormous subfield denoted as probabilistic graphical models, comprising hundreds of algorithms for example, Bayesian networks, dynamic Bayesian networks, hidden Markov models, and conditional random fields that can handle not only specific relationships between attributes, but also temporal dependencies. Kiran R Karkera wrote an excellent introductory book on this topic, Building Probabilistic Graphical Models with Python, Packt Publishing (2014), while Koller and Friedman published a comprehensive theory bible, Probabilistic Graphical Models, MIT Press (2009).
- 大數(shù)據(jù)項(xiàng)目管理:從規(guī)劃到實(shí)現(xiàn)
- 大學(xué)計(jì)算機(jī)基礎(chǔ):基礎(chǔ)理論篇
- 現(xiàn)代測(cè)控電子技術(shù)
- 玩轉(zhuǎn)智能機(jī)器人程小奔
- 平面設(shè)計(jì)初步
- Google App Inventor
- 可編程控制器技術(shù)應(yīng)用(西門子S7系列)
- Photoshop CS3圖層、通道、蒙版深度剖析寶典
- 完全掌握AutoCAD 2008中文版:機(jī)械篇
- 西門子變頻器技術(shù)入門及實(shí)踐
- MCGS嵌入版組態(tài)軟件應(yīng)用教程
- 電腦日常使用與維護(hù)322問
- Pentaho Analytics for MongoDB
- 青少年VEX IQ機(jī)器人實(shí)訓(xùn)課程(初級(jí))
- Practical Network Automation