- Machine Learning in Java
- AshishSingh Bhatia Bostjan Kaluza
- 86字
- 2021-06-10 19:30:00
Kernel methods
Any linear model can be turned into a non-linear model by applying the kernel trick to the model—replacing its features (predictors) by a kernel function. In other words, the kernel implicitly transforms our dataset into higher dimensions. The kernel trick leverages the fact that it is often easier to separate the instances in more dimensions. Algorithms capable of operating with kernels include the kernel perceptron, SVMs, Gaussian processes, PCA, canonical correlation analysis, ridge regression, spectral clustering, linear adaptive filters, and many others.
推薦閱讀
- 電力自動化實用技術問答
- Design for the Future
- 大數據時代
- Apache Superset Quick Start Guide
- Splunk Operational Intelligence Cookbook
- 從零開始學C++
- SAP Business Intelligence Quick Start Guide
- Applied Data Visualization with R and ggplot2
- 3ds Max造型表現藝術
- Microsoft Dynamics CRM 2013 Marketing Automation
- 機器學習案例分析(基于Python語言)
- Cisco UCS Cookbook
- 大話數據科學:大數據與機器學習實戰(基于R語言)
- AVR單片機C語言程序設計實例精粹
- 工業機器人編程指令詳解