官术网_书友最值得收藏!

Decision tree learning

Decision tree learning builds a classification tree, where each node corresponds to one of the attributes; edges correspond to a possible value (or intervals) of the attribute from which the node originates; and each leaf corresponds to a class label. A decision tree can be used to visually and explicitly represent the prediction model, which makes it a very transparent (white box) classifier. Notable algorithms are ID3 and C4.5, although many alternative implementations and improvements exist (for example, J48 in Weka).

主站蜘蛛池模板: 兰溪市| 卓尼县| 宣恩县| 景东| 五家渠市| 临汾市| 荥经县| 梨树县| 峨眉山市| 东丰县| 武胜县| 夏河县| 景宁| 利津县| 满洲里市| 宣城市| 高青县| 许昌市| 宁明县| 纳雍县| 新余市| 博罗县| 高要市| 当阳市| 资中县| 龙门县| 汕尾市| 宁阳县| 浦城县| 宁远县| 陆丰市| 内乡县| 南阳市| 洛阳市| 余姚市| 东平县| 西城区| 蒲城县| 郁南县| 静安区| 尼勒克县|