官术网_书友最值得收藏!

Decision tree learning

Decision tree learning builds a classification tree, where each node corresponds to one of the attributes; edges correspond to a possible value (or intervals) of the attribute from which the node originates; and each leaf corresponds to a class label. A decision tree can be used to visually and explicitly represent the prediction model, which makes it a very transparent (white box) classifier. Notable algorithms are ID3 and C4.5, although many alternative implementations and improvements exist (for example, J48 in Weka).

主站蜘蛛池模板: 文水县| 郯城县| 色达县| 色达县| 镇平县| 和龙市| 福建省| 丰县| 如东县| 盐池县| 德钦县| 南丹县| 马鞍山市| 三都| 孟津县| 文安县| 昂仁县| 汝州市| 石屏县| 余姚市| 安丘市| 安顺市| 潞城市| 运城市| 界首市| 盐津县| 甘肃省| 依安县| 宝山区| 万盛区| 亚东县| 鲁甸县| 南澳县| 临高县| 北碚区| 河东区| 天门市| 上饶市| 苏尼特左旗| 乐清市| 谢通门县|