- Machine Learning in Java
- AshishSingh Bhatia Bostjan Kaluza
- 86字
- 2021-06-10 19:29:59
Decision tree learning
Decision tree learning builds a classification tree, where each node corresponds to one of the attributes; edges correspond to a possible value (or intervals) of the attribute from which the node originates; and each leaf corresponds to a class label. A decision tree can be used to visually and explicitly represent the prediction model, which makes it a very transparent (white box) classifier. Notable algorithms are ID3 and C4.5, although many alternative implementations and improvements exist (for example, J48 in Weka).
推薦閱讀
- 工業(yè)機(jī)器人虛擬仿真實例教程:KUKA.Sim Pro(全彩版)
- Machine Learning for Cybersecurity Cookbook
- 程序設(shè)計語言與編譯
- Spark大數(shù)據(jù)技術(shù)與應(yīng)用
- Windows 7寶典
- Photoshop CS3圖層、通道、蒙版深度剖析寶典
- 網(wǎng)絡(luò)綜合布線設(shè)計與施工技術(shù)
- 單片機(jī)C語言應(yīng)用100例
- 走近大數(shù)據(jù)
- Web璀璨:Silverlight應(yīng)用技術(shù)完全指南
- JRuby語言實戰(zhàn)技術(shù)
- FreeCAD [How-to]
- 軟測之魂
- Generative Adversarial Networks Projects
- 創(chuàng)客機(jī)器人實戰(zhàn):基于Arduino和樹莓派