- TensorFlow Machine Learning Projects
- Ankit Jain Armando Fandango Amita Kapoor
- 154字
- 2021-06-10 19:15:27
Operations
The TensorFlow library contains several built-in operations that can be applied on tensors. An operation node can be defined by passing input values and saving the output in another tensor. To understand this better, let's define two operations, op1 and op2:
op1 = tf.add(const2, const3)
op2 = tf.multiply(const2, const3)
Let's print op1 and op2:
print('op1 : ', op1)
print('op2 : ', op2)
The output is as follows, and shows that op1 and op2 are defined as tensors:
To print the output from executing these operations, the op1 and op2 tensors have to be executed in a TensorFlow session:
print('run(op1) : ', tfs.run(op1))
print('run(op2) : ', tfs.run(op2))
The output is as follows:
run(op1) : 91.0 run(op2) : 1888.0
Some of the built-in operations of TensorFlow include arithmetic operations, math functions, and complex number operations.
推薦閱讀
- Managing Mission:Critical Domains and DNS
- Getting Started with Clickteam Fusion
- 計算機原理
- 極簡AI入門:一本書讀懂人工智能思維與應用
- 大數據技術入門(第2版)
- Hands-On Cybersecurity with Blockchain
- Splunk Operational Intelligence Cookbook
- 我也能做CTO之程序員職業規劃
- OpenStack Cloud Computing Cookbook
- 網站前臺設計綜合實訓
- Excel 2010函數與公式速查手冊
- 典型Hadoop云計算
- 企業級Web開發實戰
- 超好玩的Python少兒編程
- 輸送技術、設備與工業應用