官术网_书友最值得收藏!

Operations

The TensorFlow library contains several built-in operations that can be applied on tensors. An operation node can be defined by passing input values and saving the output in another tensor. To understand this better, let's define two operations, op1 and op2:

op1 = tf.add(const2, const3)
op2 = tf.multiply(const2, const3)

Let's print op1 and op2:

print('op1 : ', op1)
print('op2 : ', op2)

The output is as follows, and shows that op1 and op2 are defined as tensors:

op1 :  Tensor("Add:0", shape=(), dtype=float32)
op2 : Tensor("Mul:0", shape=(), dtype=float32)

To print the output from executing these operations, the op1 and op2 tensors have to be executed in a TensorFlow session:

print('run(op1) : ', tfs.run(op1))
print('run(op2) : ', tfs.run(op2))

The output is as follows:

run(op1) :  91.0
run(op2) :  1888.0

Some of the built-in operations of TensorFlow include arithmetic operations, math functions, and complex number operations.

主站蜘蛛池模板: 遵义县| 宁河县| 西林县| 华阴市| 平原县| 白玉县| 区。| 西盟| 文成县| 黄大仙区| 海丰县| 利川市| 龙岩市| 通州市| 邢台县| 德令哈市| 绿春县| 南澳县| 上思县| 开化县| 松桃| 祥云县| 寿光市| 龙游县| 定结县| 伊春市| 瑞丽市| 赤峰市| 仁布县| 宝坻区| 上犹县| 迁西县| 靖安县| 县级市| 红安县| 兰坪| 土默特右旗| 内乡县| 札达县| 宁国市| 东莞市|