官术网_书友最值得收藏!

Constants

The constant valued tensors are created using the tf.constant() function, and has the following definition:

tf.constant(
value,
dtype=None,
shape=None,
name='const_name',
verify_shape=False
)

Let's create some constants with the following code:

const1=tf.constant(34,name='x1')
const2=tf.constant(59.0,name='y1')
const3=tf.constant(32.0,dtype=tf.float16,name='z1')

Let's take a look at the preceding code in detail:

  • The first line of code defines a constant tensor, const1, stores a value of 34, and names it x1.
  • The second line of code defines a constant tensor, const2, stores a value of 59.0, and names it y1.
  • The third line of code defines the data type as tf.float16 for const3. Use the dtype parameter or place the data type as the second argument to denote the data type. 

Let's print the constants const1, const2, and const3:

print('const1 (x): ',const1)
print('const2 (y): ',const2)
print('const3 (z): ',const3)

When we print these constants, we get the following output:

const1 (x):  Tensor("x:0", shape=(), dtype=int32)
const2 (y): Tensor("y:0", shape=(), dtype=float32)
const3 (z): Tensor("z:0", shape=(), dtype=float16)
Upon printing the previously defined tensors, we can see that the data types of   const1  and   const2  are automatically deduced by TensorFlow.

To print the values of these constants, we can execute them in a TensorFlow session with the tfs.run() command:

print('run([const1,const2,c3]) : ',tfs.run([const1,const2,const3]))

We will see the following output:

run([const1,const2,const3]) : [34, 59.0, 32.0]
主站蜘蛛池模板: 巴东县| 历史| 镇江市| 香河县| 天门市| 曲松县| 马鞍山市| 邓州市| 钟祥市| 尼玛县| 永年县| 星座| 射洪县| 鲁甸县| 凯里市| 怀集县| 徐汇区| 铁力市| 梁河县| 阳西县| 扶余县| 吉木萨尔县| 缙云县| 甘德县| 洱源县| 沁源县| 广东省| 泽普县| 衡山县| 乌什县| 莱阳市| 织金县| 潜山县| 长宁县| 仙居县| 龙川县| 波密县| 巴彦淖尔市| 阳城县| 大丰市| 光泽县|