官术网_书友最值得收藏!

Constants

The constant valued tensors are created using the tf.constant() function, and has the following definition:

tf.constant(
value,
dtype=None,
shape=None,
name='const_name',
verify_shape=False
)

Let's create some constants with the following code:

const1=tf.constant(34,name='x1')
const2=tf.constant(59.0,name='y1')
const3=tf.constant(32.0,dtype=tf.float16,name='z1')

Let's take a look at the preceding code in detail:

  • The first line of code defines a constant tensor, const1, stores a value of 34, and names it x1.
  • The second line of code defines a constant tensor, const2, stores a value of 59.0, and names it y1.
  • The third line of code defines the data type as tf.float16 for const3. Use the dtype parameter or place the data type as the second argument to denote the data type. 

Let's print the constants const1, const2, and const3:

print('const1 (x): ',const1)
print('const2 (y): ',const2)
print('const3 (z): ',const3)

When we print these constants, we get the following output:

const1 (x):  Tensor("x:0", shape=(), dtype=int32)
const2 (y): Tensor("y:0", shape=(), dtype=float32)
const3 (z): Tensor("z:0", shape=(), dtype=float16)
Upon printing the previously defined tensors, we can see that the data types of   const1  and   const2  are automatically deduced by TensorFlow.

To print the values of these constants, we can execute them in a TensorFlow session with the tfs.run() command:

print('run([const1,const2,c3]) : ',tfs.run([const1,const2,const3]))

We will see the following output:

run([const1,const2,const3]) : [34, 59.0, 32.0]
主站蜘蛛池模板: 垦利县| 潼关县| 北流市| 恩施市| 介休市| 苗栗县| 门头沟区| 青海省| 武定县| 长泰县| 威信县| 永泰县| 牙克石市| 澄迈县| 长白| 宝兴县| 科技| 上饶市| 家居| 海盐县| 凤冈县| 深州市| 嘉兴市| 镇宁| 扎兰屯市| 贵德县| 麻阳| 屯门区| 大同县| 安陆市| 昌吉市| 灵璧县| 馆陶县| 双牌县| 福安市| 贵港市| 疏勒县| 房山区| 郯城县| 郧西县| 濮阳市|