- TensorFlow Machine Learning Projects
- Ankit Jain Armando Fandango Amita Kapoor
- 236字
- 2021-06-10 19:15:27
Constants
The constant valued tensors are created using the tf.constant() function, and has the following definition:
tf.constant(
value,
dtype=None,
shape=None,
name='const_name',
verify_shape=False
)
Let's create some constants with the following code:
const1=tf.constant(34,name='x1')
const2=tf.constant(59.0,name='y1')
const3=tf.constant(32.0,dtype=tf.float16,name='z1')
Let's take a look at the preceding code in detail:
- The first line of code defines a constant tensor, const1, stores a value of 34, and names it x1.
- The second line of code defines a constant tensor, const2, stores a value of 59.0, and names it y1.
- The third line of code defines the data type as tf.float16 for const3. Use the dtype parameter or place the data type as the second argument to denote the data type.
Let's print the constants const1, const2, and const3:
print('const1 (x): ',const1)
print('const2 (y): ',const2)
print('const3 (z): ',const3)
When we print these constants, we get the following output:
const1 (x): Tensor("x:0", shape=(), dtype=int32)
const2 (y): Tensor("y:0", shape=(), dtype=float32)
const3 (z): Tensor("z:0", shape=(), dtype=float16)
Upon printing the previously defined tensors, we can see that the data types of const1 and const2 are automatically deduced by TensorFlow.
To print the values of these constants, we can execute them in a TensorFlow session with the tfs.run() command:
print('run([const1,const2,c3]) : ',tfs.run([const1,const2,const3]))
We will see the following output:
run([const1,const2,const3]) : [34, 59.0, 32.0]
推薦閱讀
- Design for the Future
- 腦動力:C語言函數速查效率手冊
- Linux Mint System Administrator’s Beginner's Guide
- 并行數據挖掘及性能優化:關聯規則與數據相關性分析
- 大數據時代的數據挖掘
- 機艙監測與主機遙控
- 四向穿梭式自動化密集倉儲系統的設計與控制
- Visual C++編程全能詞典
- 傳感器與新聞
- TensorFlow Reinforcement Learning Quick Start Guide
- 走近大數據
- 深度學習原理與 TensorFlow實踐
- Creating ELearning Games with Unity
- Windows 7來了
- PostgreSQL High Performance Cookbook