官术网_书友最值得收藏!

Constants

The constant valued tensors are created using the tf.constant() function, and has the following definition:

tf.constant(
value,
dtype=None,
shape=None,
name='const_name',
verify_shape=False
)

Let's create some constants with the following code:

const1=tf.constant(34,name='x1')
const2=tf.constant(59.0,name='y1')
const3=tf.constant(32.0,dtype=tf.float16,name='z1')

Let's take a look at the preceding code in detail:

  • The first line of code defines a constant tensor, const1, stores a value of 34, and names it x1.
  • The second line of code defines a constant tensor, const2, stores a value of 59.0, and names it y1.
  • The third line of code defines the data type as tf.float16 for const3. Use the dtype parameter or place the data type as the second argument to denote the data type. 

Let's print the constants const1, const2, and const3:

print('const1 (x): ',const1)
print('const2 (y): ',const2)
print('const3 (z): ',const3)

When we print these constants, we get the following output:

const1 (x):  Tensor("x:0", shape=(), dtype=int32)
const2 (y): Tensor("y:0", shape=(), dtype=float32)
const3 (z): Tensor("z:0", shape=(), dtype=float16)
Upon printing the previously defined tensors, we can see that the data types of   const1  and   const2  are automatically deduced by TensorFlow.

To print the values of these constants, we can execute them in a TensorFlow session with the tfs.run() command:

print('run([const1,const2,c3]) : ',tfs.run([const1,const2,const3]))

We will see the following output:

run([const1,const2,const3]) : [34, 59.0, 32.0]
主站蜘蛛池模板: 尼木县| 会昌县| 临高县| 景洪市| 华坪县| 西安市| 大方县| 神农架林区| 西吉县| 广丰县| 玉环县| 富源县| 汤原县| 武强县| 宁阳县| 元谋县| 黔南| 金山区| 志丹县| 山西省| 临泉县| 涟源市| 商河县| 大港区| 秀山| 华亭县| 博野县| 信宜市| 开阳县| 九寨沟县| 娱乐| 海晏县| 冷水江市| 翁牛特旗| 藁城市| 信丰县| 城市| 沁源县| 通许县| 娱乐| 库尔勒市|