- TensorFlow Machine Learning Projects
- Ankit Jain Armando Fandango Amita Kapoor
- 278字
- 2021-06-10 19:15:27
Placeholders
While constants store the value at the time of defining the tensor, placeholders allow you to create empty tensors so that the values can be provided at runtime. The TensorFlow library provides the tf.placeholder() function with the following signature to create placeholders:
tf.placeholder(
dtype,
shape=None,
name=None
)
As an example, let's create two placeholders and print them:
p1 = tf.placeholder(tf.float32)
p2 = tf.placeholder(tf.float32)
print('p1 : ', p1)
print('p2 : ', p2)
The following output shows that each placeholder has been created as a tensor:
p1 : Tensor("Placeholder:0", dtype=float32)
p2 : Tensor("Placeholder_1:0", dtype=float32)
Let's define an operation using these placeholders:
mult_op = p1 * p2
In TensorFlow, shorthand symbols can be used for various operations. In the preceding code, p1 * p2 is shorthand for tf.multiply(p1,p2):
print('run(mult_op,{p1:13.4, p2:61.7}) : ',tfs.run(mult_op,{p1:13.4, p2:61.7}))
The preceding command runs mult_op in the TensorFlow session and feeds the values dictionary (the second argument to the run() operation) with the values for p1 and p2.
The output is as follows:
run(mult_op,{p1:13.4, p2:61.7}) : 826.77997
We can also specify the values dictionary by using the feed_dict parameter in the run() operation:
feed_dict={p1: 15.4, p2: 19.5}
print('run(mult_op,feed_dict = {p1:15.4, p2:19.5}) : ',
tfs.run(mult_op, feed_dict=feed_dict))
The output is as follows:
run(mult_op,feed_dict = {p1:15.4, p2:19.5}) : 300.3
Let's look at one final example, which is of a vector being fed to the same operation:
feed_dict={p1: [2.0, 3.0, 4.0], p2: [3.0, 4.0, 5.0]}
print('run(mult_op,feed_dict={p1:[2.0,3.0,4.0], p2:[3.0,4.0,5.0]}):',
tfs.run(mult_op, feed_dict=feed_dict))
The output is as follows:
run(mult_op,feed_dict={p1:[2.0,3.0,4.0],p2:[3.0,4.0,5.0]}):[ 6. 12. 20.]
The elements of the two input vectors are multiplied in an element-wise fashion.
- Circos Data Visualization How-to
- 數據庫原理與應用技術學習指導
- 電腦上網直通車
- B2B2C網上商城開發指南
- Supervised Machine Learning with Python
- Splunk Operational Intelligence Cookbook
- 人工智能趣味入門:光環板程序設計
- 傳感器與新聞
- 工業機器人運動仿真編程實踐:基于Android和OpenGL
- Windows Server 2008 R2活動目錄內幕
- 精通LabVIEW程序設計
- SQL Server數據庫應用基礎(第2版)
- Apache Spark Machine Learning Blueprints
- Photoshop CS6白金手冊
- 從實踐中學嵌入式Linux操作系統