官术网_书友最值得收藏!

Objective function

The objective function is the main method for training a 3D-GAN. It provides loss values, which are used to calculate gradients and then to update the weight values. The adversarial loss function for a 3D-GAN is as follows:

Here, log(D(x)) is the binary cross-entropy loss or classification loss, log(1-D(G(z))) is the adversarial loss, z is the latent vector from probabilistic space p(z), D(x) is the output from the discriminator network, and G(z) is the output from the generator network.

主站蜘蛛池模板: 息烽县| 九龙坡区| 绥棱县| 墨脱县| 四子王旗| 光泽县| 吉安市| 政和县| 阜城县| 区。| 施甸县| 灵丘县| 庄河市| 平定县| 新龙县| 旬阳县| 静宁县| 阆中市| 平罗县| 牡丹江市| 鄂州市| 义乌市| 青海省| 岳西县| 铁力市| 杭州市| 眉山市| 雷波县| 衡东县| 海南省| 商洛市| 蓝山县| 彰化县| 江孜县| 博湖县| 赞皇县| 依安县| 吉林市| 蛟河市| 和平区| 巍山|