官术网_书友最值得收藏!

Objective function

The objective function is the main method for training a 3D-GAN. It provides loss values, which are used to calculate gradients and then to update the weight values. The adversarial loss function for a 3D-GAN is as follows:

Here, log(D(x)) is the binary cross-entropy loss or classification loss, log(1-D(G(z))) is the adversarial loss, z is the latent vector from probabilistic space p(z), D(x) is the output from the discriminator network, and G(z) is the output from the generator network.

主站蜘蛛池模板: 顺义区| 宕昌县| 师宗县| 扶风县| 含山县| 那曲县| 罗源县| 晴隆县| 津南区| 胶南市| 丽江市| 三门县| 渝北区| 承德县| 会昌县| 八宿县| 革吉县| 澎湖县| 嘉兴市| 光泽县| 万全县| 梅河口市| 台南市| 东乌珠穆沁旗| 酒泉市| 永城市| 吴江市| 花莲市| 和静县| 翁源县| 许昌市| 阳谷县| 北碚区| 佳木斯市| 滨海县| 长沙市| 句容市| 娱乐| 会泽县| 镇宁| 措勤县|