- Generative Adversarial Networks Projects
- Kailash Ahirwar
- 84字
- 2021-07-02 13:38:51
Objective function
The objective function is the main method for training a 3D-GAN. It provides loss values, which are used to calculate gradients and then to update the weight values. The adversarial loss function for a 3D-GAN is as follows:

Here, log(D(x)) is the binary cross-entropy loss or classification loss, log(1-D(G(z))) is the adversarial loss, z is the latent vector from probabilistic space p(z), D(x) is the output from the discriminator network, and G(z) is the output from the generator network.
推薦閱讀
- 高效能辦公必修課:Word圖文處理
- 輕松學C語言
- 樂高機器人:WeDo編程與搭建指南
- Dreamweaver CS3+Flash CS3+Fireworks CS3創意網站構建實例詳解
- 人工免疫算法改進及其應用
- Linux Mint System Administrator’s Beginner's Guide
- 城市道路交通主動控制技術
- Splunk Operational Intelligence Cookbook
- Lightning Fast Animation in Element 3D
- 我也能做CTO之程序員職業規劃
- Grome Terrain Modeling with Ogre3D,UDK,and Unity3D
- 機器人人工智能
- 基于RPA技術財務機器人的應用與研究
- 傳感器原理與工程應用
- 筆記本電腦使用與維護