官术网_书友最值得收藏!

Training 3D-GANs

Training a 3D-GAN is similar to training a vanilla GAN. The steps involved in the training of a 3D-GAN are as follows:

  1.  Sample a 200-dimensional noise vector from a Gaussian (normal) distribution.
  2. Generate a fake image using the generator model.
  3. Train the generator network on real images (sampled from real data) and on the fake images generated by the generator network.
  4. Use the adversarial model to train the generator model. Don't train the discriminator model.
  5. Repeat these steps for a specified number of epochs.

We will explore these steps in detail in a later section. Let's move on to setting up a project.

主站蜘蛛池模板: 海阳市| 巴彦县| 清徐县| 徐汇区| 龙州县| 青龙| 穆棱市| 保康县| 清丰县| 清丰县| 阿拉善右旗| 随州市| 肥东县| 牡丹江市| 衢州市| 互助| 中西区| 兴宁市| 泰来县| 青川县| 海林市| 黄冈市| 若羌县| 舟曲县| 兴山县| 格尔木市| 即墨市| 佛坪县| 丰镇市| 尖扎县| 丰原市| 阿巴嘎旗| 乐清市| 洞口县| 普兰县| 泰来县| 通榆县| 依兰县| 延吉市| 宜春市| 涪陵区|