官术网_书友最值得收藏!

The architecture of the discriminator network

The discriminator network contains five volumetric convolutional layers with the following configuration:

  • 3D convolutional layers: 5
  • Channels: 64, 128, 256, 512, 1
  • Kernel sizes: 4, 4, 4, 4, 4
  • Strides: 2, 2, 2, 2, 1
  • Activations: Leaky ReLU, Leaky ReLU, Leaky ReLU, Leaky ReLU, Sigmoid
  • Batch normalization: Yes, Yes, Yes, Yes, None
  • Pooling layers: No, No, No, No, No
  • Linear layers: No, No, No, No, No

The input and output of the network are as follows:

  • InputA 3D image with shape (64, 64, 64) 
  • Output: The probability of the input data belonging to either the real or the fake class

The flow of the tensors and the input and output shapes of the tensors for each layer in the discriminator network are shown in the following diagram. This will provide you with a better understanding of the discriminator network:

The discriminator network mostly mirrors the generator network. An important difference is that it uses LeakyReLU instead of ReLU as the activation function. Also, the sigmoid layer at the end of the network is for binary classification and predicts whether the provided image is real or fake. The last layer has no normalization layer, but the other layers use batch normalization to regularize the input.

主站蜘蛛池模板: 辽宁省| 高安市| 安福县| 宜阳县| 玉山县| 桦甸市| 麻城市| 武山县| 屯昌县| 凤台县| 江孜县| 贵州省| 正定县| 饶河县| 汶上县| 新蔡县| 仁化县| 全州县| 峨眉山市| 湟源县| 达孜县| 昌吉市| 永德县| 成都市| 肥西县| 本溪| 奉新县| 体育| 铜梁县| 南乐县| 锡林浩特市| 松滋市| 呼和浩特市| 福海县| 广饶县| 贺兰县| 遂昌县| 大竹县| 松滋市| 平潭县| 突泉县|