官术网_书友最值得收藏!

The architecture of the discriminator network

The discriminator network contains five volumetric convolutional layers with the following configuration:

  • 3D convolutional layers: 5
  • Channels: 64, 128, 256, 512, 1
  • Kernel sizes: 4, 4, 4, 4, 4
  • Strides: 2, 2, 2, 2, 1
  • Activations: Leaky ReLU, Leaky ReLU, Leaky ReLU, Leaky ReLU, Sigmoid
  • Batch normalization: Yes, Yes, Yes, Yes, None
  • Pooling layers: No, No, No, No, No
  • Linear layers: No, No, No, No, No

The input and output of the network are as follows:

  • InputA 3D image with shape (64, 64, 64) 
  • Output: The probability of the input data belonging to either the real or the fake class

The flow of the tensors and the input and output shapes of the tensors for each layer in the discriminator network are shown in the following diagram. This will provide you with a better understanding of the discriminator network:

The discriminator network mostly mirrors the generator network. An important difference is that it uses LeakyReLU instead of ReLU as the activation function. Also, the sigmoid layer at the end of the network is for binary classification and predicts whether the provided image is real or fake. The last layer has no normalization layer, but the other layers use batch normalization to regularize the input.

主站蜘蛛池模板: 黄陵县| 伊春市| 句容市| 贵港市| 徐闻县| 雅江县| 会宁县| 建水县| 桑植县| 南昌县| 古蔺县| 雷波县| 兴城市| 博湖县| 大英县| 灵石县| 山东省| 灵寿县| 丹江口市| 五原县| 泸州市| 凭祥市| 洛浦县| 原阳县| 镇宁| 洛南县| 迁西县| 建昌县| 陵川县| 青冈县| 江都市| 成武县| 宜章县| 弋阳县| 丹阳市| 阿拉善盟| 手游| 特克斯县| 阿合奇县| 利川市| 达尔|