官术网_书友最值得收藏!

The architecture of the generator network

The generator network contains five volumetric, fully convolutional layers with the following configuration:

  • Convolutional layers: 5
  • Filters512, 256, 128, 64, 1
  • Kernel size: 4 x 4 x 4, 4 x 4 x 4, 4 x 4 x 4, 4 x 4 x 4, 4 x 4 x 4
  • Strides: 1, 2, 2, 2, 2 or (1, 1), (2, 2), (2, 2), (2, 2), (2, 2) 
  • Batch normalization: Yes, Yes, Yes, Yes, No
  • Activations: ReLU, ReLU, ReLU, ReLU, Sigmoid
  • Pooling layers: No, No, No, No, No
  • Linear layers: No, No, No, No, No

The input and output of the network are as follows:

  • Input: A 200-dimensional vector sampled from a probabilistic latent space
  • Output: A 3D image with a shape of 64x64x64

 The architecture of the generator can be seen in the following image:

The flow of the tensors and the input and output shapes of the tensors for each layer in the discriminator network are shown in the following diagram. This will give you a better understanding of the network:

A fully convolutional network is a network without fully connected dense layers at the end of the network. Instead, it just consists of convolutional layers and can be end-to-end trained, like a convolutional network with fully connected layers. There are no pooling layers in a generator network.
主站蜘蛛池模板: 鄂尔多斯市| 县级市| 兴山县| 新昌县| 汶上县| 昌平区| 京山县| 三江| 毕节市| 湘阴县| 错那县| 辉南县| 高安市| 宾阳县| 孟村| 扎兰屯市| 观塘区| 姜堰市| 射洪县| 三江| 新疆| 汝南县| 铁岭县| 芮城县| 大同县| 大渡口区| 茶陵县| 常州市| 临夏市| 新兴县| 邢台县| 成都市| 盐城市| 四会市| 麦盖提县| 太仓市| 东海县| 古丈县| 如皋市| 佳木斯市| 道孚县|