官术网_书友最值得收藏!

The architecture of the generator network

The generator network contains five volumetric, fully convolutional layers with the following configuration:

  • Convolutional layers: 5
  • Filters512, 256, 128, 64, 1
  • Kernel size: 4 x 4 x 4, 4 x 4 x 4, 4 x 4 x 4, 4 x 4 x 4, 4 x 4 x 4
  • Strides: 1, 2, 2, 2, 2 or (1, 1), (2, 2), (2, 2), (2, 2), (2, 2) 
  • Batch normalization: Yes, Yes, Yes, Yes, No
  • Activations: ReLU, ReLU, ReLU, ReLU, Sigmoid
  • Pooling layers: No, No, No, No, No
  • Linear layers: No, No, No, No, No

The input and output of the network are as follows:

  • Input: A 200-dimensional vector sampled from a probabilistic latent space
  • Output: A 3D image with a shape of 64x64x64

 The architecture of the generator can be seen in the following image:

The flow of the tensors and the input and output shapes of the tensors for each layer in the discriminator network are shown in the following diagram. This will give you a better understanding of the network:

A fully convolutional network is a network without fully connected dense layers at the end of the network. Instead, it just consists of convolutional layers and can be end-to-end trained, like a convolutional network with fully connected layers. There are no pooling layers in a generator network.
主站蜘蛛池模板: 绥滨县| 东安县| 满洲里市| 定边县| 巴彦淖尔市| 普洱| 临洮县| 临安市| 鸡泽县| 山阳县| 长顺县| 嘉禾县| 昭苏县| 五大连池市| 和静县| 焦作市| 汽车| 大悟县| 乐安县| 汉阴县| 方山县| 舞阳县| 罗源县| 怀化市| 江安县| 革吉县| 新竹市| 建德市| 松江区| 即墨市| 阜康市| 麻栗坡县| 海淀区| 漳州市| 灵璧县| 光泽县| 朝阳市| 炉霍县| 年辖:市辖区| 民和| 东城区|