官术网_书友最值得收藏!

  • Python Reinforcement Learning
  • Sudharsan Ravichandiran Sean Saito Rajalingappaa Shanmugamani Yang Wenzhuo
  • 154字
  • 2021-06-24 15:17:29

Computation graph

Everything in TensorFlow will be represented as a computational graph that consists of nodes and edges, where nodes are the mathematical operations, say addition, multiplication and so on, and edges are the tensors. Having a computational graph is very efficient in optimizing resources and it also promotes distributed computing.

Say we have node B, whose input is dependent on the output of node A; this type of dependency is called direct dependency.

For example:

A = tf.multiply(8,5)
B = tf.multiply(A,1)

When node B doesn't depend on node A for its input it is called indirect dependency.

For example:

A = tf.multiply(8,5)
B = tf.multiply(4,3)

So if we can understand these dependencies, we can distribute the independent computations in the available resources and reduce the computation time. 

Whenever we import TensorFlow, a default graph will be created automatically and all nodes we create will get associated with the default graph.

主站蜘蛛池模板: 吉木萨尔县| 定日县| 双柏县| 长寿区| 班玛县| 潞西市| 公主岭市| 大同县| 行唐县| 玛多县| 鲁山县| 闸北区| 保亭| 定安县| 磐石市| 屏山县| 诸暨市| 贞丰县| 汤阴县| 中山市| 阿克陶县| 达尔| 承德市| 建阳市| 谢通门县| 都江堰市| 华池县| 香河县| 托克托县| 美姑县| 色达县| 华宁县| 永宁县| 教育| 武川县| 临汾市| 辽宁省| 昌乐县| 新昌县| 乌拉特后旗| 鄂州市|