- Python Reinforcement Learning
- Sudharsan Ravichandiran Sean Saito Rajalingappaa Shanmugamani Yang Wenzhuo
- 154字
- 2021-06-24 15:17:29
Computation graph
Everything in TensorFlow will be represented as a computational graph that consists of nodes and edges, where nodes are the mathematical operations, say addition, multiplication and so on, and edges are the tensors. Having a computational graph is very efficient in optimizing resources and it also promotes distributed computing.
Say we have node B, whose input is dependent on the output of node A; this type of dependency is called direct dependency.
For example:
A = tf.multiply(8,5)
B = tf.multiply(A,1)
When node B doesn't depend on node A for its input it is called indirect dependency.
For example:
A = tf.multiply(8,5)
B = tf.multiply(4,3)
So if we can understand these dependencies, we can distribute the independent computations in the available resources and reduce the computation time.
Whenever we import TensorFlow, a default graph will be created automatically and all nodes we create will get associated with the default graph.
- 數據庫基礎教程(SQL Server平臺)
- 程序員修煉之道:從小工到專家
- 有趣的二進制:軟件安全與逆向分析
- SQL入門經典(第5版)
- 數據分析實戰:基于EXCEL和SPSS系列工具的實踐
- SQL Server入門經典
- 工業大數據分析算法實戰
- 商業分析思維與實踐:用數據分析解決商業問題
- Creating Dynamic UIs with Android Fragments(Second Edition)
- 數據革命:大數據價值實現方法、技術與案例
- 金融商業算法建模:基于Python和SAS
- Python數據分析與挖掘實戰(第3版)
- 大數據分析:R基礎及應用
- 大數據時代系列(套裝9冊)
- Rust High Performance