官术网_书友最值得收藏!

Sessions

Computation graphs will only be defined; in order to execute the computation graph, we use TensorFlow sessions:

sess = tf.Session()

We can create the session for our computation graph using the tf.Session() method, which will allocate the memory for storing the current value of the variable. After creating the session, we can execute our graph with the sess.run() method.

In order to run anything in TensorFlow, we need to start the TensorFlow session for an instance; please refer to the code:

import tensorflow as tf
a = tf.multiply(2,3)
print(a)

It will print a TensorFlow object instead of 6. As already said, whenever we import TensorFlow a default computation graph will automatically be created and all nodes a that we created will get attached to the graph. In order to execute the graph, we need to initialize a TensorFlow session as follows:

#Import tensorflow 
import tensorflow as tf

#Initialize variables
a = tf.multiply(2,3)

#create tensorflow session for executing the session
with tf.Session() as sess:
#run the session
print(sess.run(a))

The preceding code will print 6.

主站蜘蛛池模板: 永和县| 五大连池市| 红河县| 莱阳市| 鄂州市| 卓尼县| 体育| 玉龙| 宜川县| 远安县| 正定县| 米易县| 徐州市| 泾川县| 曲阜市| 延津县| 高阳县| 舞钢市| 宁强县| 太白县| 开鲁县| 定陶县| 湾仔区| 鄂伦春自治旗| 望谟县| 阿图什市| 大冶市| 都江堰市| 澳门| 从化市| 洛隆县| 台中县| 房产| 定日县| 龙陵县| 都江堰市| 栖霞市| 海口市| 茶陵县| 屏东市| 南木林县|