官术网_书友最值得收藏!

Sessions

Computation graphs will only be defined; in order to execute the computation graph, we use TensorFlow sessions:

sess = tf.Session()

We can create the session for our computation graph using the tf.Session() method, which will allocate the memory for storing the current value of the variable. After creating the session, we can execute our graph with the sess.run() method.

In order to run anything in TensorFlow, we need to start the TensorFlow session for an instance; please refer to the code:

import tensorflow as tf
a = tf.multiply(2,3)
print(a)

It will print a TensorFlow object instead of 6. As already said, whenever we import TensorFlow a default computation graph will automatically be created and all nodes a that we created will get attached to the graph. In order to execute the graph, we need to initialize a TensorFlow session as follows:

#Import tensorflow 
import tensorflow as tf

#Initialize variables
a = tf.multiply(2,3)

#create tensorflow session for executing the session
with tf.Session() as sess:
#run the session
print(sess.run(a))

The preceding code will print 6.

主站蜘蛛池模板: 湖南省| 新兴县| 德州市| 克山县| 东海县| 高淳县| 射阳县| 昌平区| 建昌县| 常熟市| 中牟县| 永嘉县| 仙游县| 金寨县| 东至县| 澎湖县| 宜州市| 荆州市| 龙江县| 伽师县| 黎川县| 威信县| 宁远县| 基隆市| 郸城县| 洪江市| 措勤县| 汪清县| 普兰县| 固阳县| 南雄市| 读书| 南城县| 玉林市| 乌苏市| 红河县| 伊金霍洛旗| 红河县| 周至县| 曲周县| 固镇县|