- Python Reinforcement Learning
- Sudharsan Ravichandiran Sean Saito Rajalingappaa Shanmugamani Yang Wenzhuo
- 100字
- 2021-06-24 15:17:29
Placeholders
Think of placeholders as variables where you only define the type and dimension but will not assign the value. Placeholders are defined with no values. Values for the placeholders will be fed at runtime. Placeholders have an optional argument called shape, which specifies the dimensions of the data. If the shape is set to None then we can feed data of any size at runtime. Placeholders can be defined using the tf.placeholder() function:
x = tf.placeholder("float", shape=None)
To put it in simple terms, we use tf.Variable to store the data and tf.placeholder for feeding the external data.
推薦閱讀
- 數(shù)據(jù)庫(kù)原理及應(yīng)用教程(第4版)(微課版)
- 復(fù)雜性思考:復(fù)雜性科學(xué)和計(jì)算模型(原書(shū)第2版)
- Visual Studio 2015 Cookbook(Second Edition)
- 云計(jì)算服務(wù)保障體系
- Python醫(yī)學(xué)數(shù)據(jù)分析入門(mén)
- 圖數(shù)據(jù)實(shí)戰(zhàn):用圖思維和圖技術(shù)解決復(fù)雜問(wèn)題
- SQL應(yīng)用及誤區(qū)分析
- Spark分布式處理實(shí)戰(zhàn)
- SQL Server 2012實(shí)施與管理實(shí)戰(zhàn)指南
- 中文版Access 2007實(shí)例與操作
- Filecoin原理與實(shí)現(xiàn)
- Deep Learning with R for Beginners
- 企業(yè)大數(shù)據(jù)處理:Spark、Druid、Flume與Kafka應(yīng)用實(shí)踐
- Access 2016數(shù)據(jù)庫(kù)應(yīng)用基礎(chǔ)
- Artificial Intelligence for Big Data