- Python Reinforcement Learning
- Sudharsan Ravichandiran Sean Saito Rajalingappaa Shanmugamani Yang Wenzhuo
- 100字
- 2021-06-24 15:17:29
Placeholders
Think of placeholders as variables where you only define the type and dimension but will not assign the value. Placeholders are defined with no values. Values for the placeholders will be fed at runtime. Placeholders have an optional argument called shape, which specifies the dimensions of the data. If the shape is set to None then we can feed data of any size at runtime. Placeholders can be defined using the tf.placeholder() function:
x = tf.placeholder("float", shape=None)
To put it in simple terms, we use tf.Variable to store the data and tf.placeholder for feeding the external data.
推薦閱讀
- MySQL高可用解決方案:從主從復制到InnoDB Cluster架構
- Python絕技:運用Python成為頂級數據工程師
- 從零開始學Hadoop大數據分析(視頻教學版)
- Python數據挖掘:入門、進階與實用案例分析
- Voice Application Development for Android
- Creating Mobile Apps with Sencha Touch 2
- Python數據分析、挖掘與可視化從入門到精通
- Learning Spring Boot
- 數據革命:大數據價值實現方法、技術與案例
- WS-BPEL 2.0 Beginner's Guide
- 數亦有道:Python數據科學指南
- Python金融數據分析(原書第2版)
- 網站數據庫技術
- 數據庫技術實用教程
- 數據庫原理與應用