- Hands-On Generative Adversarial Networks with Keras
- Rafael Valle
- 38字
- 2021-06-24 14:33:50
L2 loss
The L2 loss function, also known as MSE, measures the average point-wise squared difference between the prediction, , and the target value,
. Compared to the L1 loss function, the L2 loss function penalizes larger errors:

推薦閱讀
- 手把手教你玩轉(zhuǎn)RPA:基于UiPath和Blue Prism
- 反饋系統(tǒng):多學(xué)科視角(原書第2版)
- 網(wǎng)絡(luò)化分布式系統(tǒng)預(yù)測(cè)控制
- INSTANT Drools Starter
- 網(wǎng)絡(luò)安全與防護(hù)
- 網(wǎng)絡(luò)存儲(chǔ)·數(shù)據(jù)備份與還原
- C++程序設(shè)計(jì)基礎(chǔ)(上)
- Building Google Cloud Platform Solutions
- Practical AWS Networking
- 網(wǎng)站規(guī)劃與網(wǎng)頁(yè)設(shè)計(jì)
- 深度學(xué)習(xí)之模型優(yōu)化:核心算法與案例實(shí)踐
- Flash 8中文版全程自學(xué)手冊(cè)
- 微控制器的選擇與應(yīng)用
- 這樣用Word!
- CAD應(yīng)用程序開發(fā)詳解