- Hands-On Generative Adversarial Networks with Keras
- Rafael Valle
- 79字
- 2021-06-24 14:33:49
L1 loss
The L1 loss function, also known as the mean absolute error, measures the average point-wise difference between the model prediction, , and the target value,
. The partial derivative is equal to 1 when the model prediction is larger than the target value, and equal to -1 when the prediction is smaller than the target error. This property of the L1 loss function can be used to circumvent problems that might arise when learning from noisy labels:

推薦閱讀
- 手把手教你玩轉RPA:基于UiPath和Blue Prism
- 讓每張照片都成為佳作的Photoshop后期技法
- Data Wrangling with Python
- 永磁同步電動機變頻調速系統及其控制(第2版)
- Enterprise PowerShell Scripting Bootcamp
- 工業機器人運動仿真編程實踐:基于Android和OpenGL
- Python:Data Analytics and Visualization
- 突破,Objective-C開發速學手冊
- 工業機器人實操進階手冊
- 簡明學中文版Photoshop
- 貫通開源Web圖形與報表技術全集
- 基于人工免疫原理的檢測系統模型及其應用
- 玩機器人 學單片機
- 網絡信息安全項目教程
- 開放自動化系統應用與實戰:基于標準建模語言IEC 61499