官术网_书友最值得收藏!

參考文獻

[1] WIENER N. The homogeneous chaos[J]. American Journal of Mathematics, 1938, 4(60): 897936.

[2] VAN KAMPEN N G. Stochastic processes in physics and chemistry[M]. Amsterdam: Elsevier, 1992.

[3] OBERKAMPF W L. Perspectives on verification, validation, and uncertainty quantification[C]//SIAM Conference on Computational Science and Engineering. Miami: SIAM, 2009.

[4] WINTER C L, TARTAKOVSKY D M. Groundwater flow in heterogeneous composite aquifers[J]. Water Resources Research, 2002, 8(38): 23-1-23-11.

[5] National Research Council. The mathematical sciences in 2025[M]. Washington, DC: The National Academies Press, 2013.

[6] ODEN J T, PRUDHOMME S. Control of modeling error in calibration and validation processes for predictive stochastic models[J]. International Journal for Numerical Methods in Engineering, 2011(87): 262-272.

[7] GARDINER C W. Handbook of stochastic methods: for physics, chemistry and the natural sciences[M]. Berlin: Springer, 1985.

[8] LOH W L. On Latin hypercube sampling[J]. The Annals of Statistics, 1996, 24(5): 2058-2080.

[9] FOX B L. Strategies for quasi-Monte Carlo[M]. Boston: Kluwer Academic Publishers, 1999.

[10] HEINRICH S. Multilevel Monte Carlo methods[C]//International Conference on Large-Scale Scientific Computing. Sozopol, Bulgaria: LSSC, 2001.

[11] KLEIBER M, HIEN T D. The stochastic finite element method: basic perturbation technique and computer implementation[M]. Chichester: Wiley, 1992.

[12] SHINOZUKA M, DEODATIS G. Response variability of stochastic finite element systems[J]. Journal of Engineering Mechanics, 1988, 3(114): 499-519.

[13] DEODATIS G. Weighted integral method. I: stochastic stiffness matrix[J]. Journal of Engineering Mechanics, 1991, 8(117): 1851-1864.

[14] DAGAN G. Flow and transport in porous formations[M]. Berlin: Springer, 1989.

[15] H?NGGI P. Correlation functions and masterequations of generalized(non-Markovian) Langevin equations[J]. Zeitschrift für Physik B Condensed Matter, 1978 31(4): 407-416.

[16] POPE S B. Turbulent flows[M]. Cambridge: Cambridge University Press, 2000.

[17] TARTAKOVSKY D M. PDF methods for reactive transport in porous[C]//Calibration and Reliability in Groundwater Modelling: A Few Steps Closer to Reality: Proceedings of the Model CARE 2002 Conference. Prague, Czech Republic: International Assn of Hydrological Sciences, 2002.

[18] TARTAKOVSKY D M, BROYDA S. PDF equations for advective-reactive transport in heterogeneous porous media with uncertain properties[J]. Journal of Contaminant Hydrology, 2011(120-121): 129-140.

[19] WANG P, TARTAKOVSKY D M. Uncertainty quantification in kinematic-wave models[J]. Journal of Computational Physics, 2012, 23(231): 7868-7880.

[20] WANG P, TARTAKOVSKY A M, TARTAKOVSKY D M. Probability density function method for Langevin equations with colored noise[J]. Physical Review Letters, 2013, 14(110): 140602.

[21] GHANEM R G, SPANOS P D. Stochastic finite elements: a spectral approach[M]. New York: Springer, 1991.

[22] XIU D, KARNIADAKIS G E. The wiener-askey polynomial chaos for stochastic differential equations[J]. SIAM Journal on Scientific Computing, 2002, 2(24): 619-644.

[23] XIU D. Numerical methods for stochastic computations[M]. Princeton, New Jersey: Princeton University Press, 2010.

主站蜘蛛池模板: 资溪县| 八宿县| 纳雍县| 司法| 奎屯市| 平利县| 莒南县| 台州市| 陈巴尔虎旗| 扬州市| 苏尼特右旗| 宁陕县| 怀宁县| 枣强县| 丹江口市| 甘孜| 上思县| 武川县| 沁源县| 武夷山市| 睢宁县| 疏勒县| 肥城市| 游戏| 锡林郭勒盟| 茂名市| 汤原县| 城口县| 玉屏| 白山市| 新郑市| 蓝田县| 垣曲县| 柳河县| 平安县| 孟村| 铁岭县| 乐安县| 牡丹江市| 沧州市| 靖江市|