目錄(133章)
倒序
- coverpage
- Title Page
- Copyright
- Neural Networks with R
- Credits
- About the Authors
- About the Reviewer
- www.PacktPub.com
- Why subscribe?
- Customer Feedback
- Preface
- What this book covers
- What you need for this book
- Who this book is for
- Conventions
- Reader feedback
- Customer support
- Downloading the example code
- Errata
- Piracy
- Questions
- Neural Network and Artificial Intelligence Concepts
- Introduction
- Inspiration for neural networks
- How do neural networks work?
- Layered approach
- Weights and biases
- Training neural networks
- Supervised learning
- Unsupervised learning
- Epoch
- Activation functions
- Different activation functions
- Linear function
- Unit step activation function
- Sigmoid
- Hyperbolic tangent
- Rectified Linear Unit
- Which activation functions to use?
- Perceptron and multilayer architectures
- Forward and backpropagation
- Step-by-step illustration of a neuralnet and an activation function
- Feed-forward and feedback networks
- Gradient descent
- Taxonomy of neural networks
- Simple example using R neural net library - neuralnet()
- Let us go through the code line-by-line
- Implementation using nnet() library
- Let us go through the code line-by-line
- Deep learning
- Pros and cons of neural networks
- Pros
- Cons
- Best practices in neural network implementations
- Quick note on GPU processing
- Summary
- Learning Process in Neural Networks
- What is machine learning?
- Supervised learning
- Unsupervised learning
- Reinforcement learning
- Training and testing the model
- The data cycle
- Evaluation metrics
- Confusion matrix
- True Positive Rate
- True Negative Rate
- Accuracy
- Precision and recall
- F-score
- Receiver Operating Characteristic curve
- Learning in neural networks
- Back to backpropagation
- Neural network learning algorithm optimization
- Supervised learning in neural networks
- Boston dataset
- Neural network regression with the Boston dataset
- Unsupervised learning in neural networks
- Competitive learning
- Kohonen SOM
- Summary
- Deep Learning Using Multilayer Neural Networks
- Introduction of DNNs
- R for DNNs
- Multilayer neural networks with neuralnet
- Training and modeling a DNN using H2O
- Deep autoencoders using H2O
- Summary
- Perceptron Neural Network Modeling – Basic Models
- Perceptrons and their applications
- Simple perceptron – a linear separable classifier
- Linear separation
- The perceptron function in R
- Multi-Layer Perceptron
- MLP R implementation using RSNNS
- Summary
- Training and Visualizing a Neural Network in R
- Data fitting with neural network
- Exploratory analysis
- Neural network model
- Classifing breast cancer with a neural network
- Exploratory analysis
- Neural network model
- The network training phase
- Testing the network
- Early stopping in neural network training
- Avoiding overfitting in the model
- Generalization of neural networks
- Scaling of data in neural network models
- Ensemble predictions using neural networks
- Summary
- Recurrent and Convolutional Neural Networks
- Recurrent Neural Network
- The rnn package in R
- LSTM model
- Convolutional Neural Networks
- Step #1 – filtering
- Step #2 – pooling
- Step #3 – ReLU for normalization
- Step #4 – voting and classification in the fully connected layer
- Common CNN architecture - LeNet
- Humidity forecast using RNN
- Summary
- Use Cases of Neural Networks – Advanced Topics
- TensorFlow integration with R
- Keras integration with R
- MNIST HWR using R
- LSTM using the iris dataset
- Working with autoencoders
- PCA using H2O
- Autoencoders using H2O
- Breast cancer detection using darch
- Summary 更新時(shí)間:2021-08-20 10:25:39
推薦閱讀
- Boost程序庫(kù)完全開(kāi)發(fā)指南:深入C++”準(zhǔn)”標(biāo)準(zhǔn)庫(kù)(第5版)
- Rust實(shí)戰(zhàn)
- Python從菜鳥(niǎo)到高手(第2版)
- Spring實(shí)戰(zhàn)(第5版)
- HTML5入門(mén)經(jīng)典
- Learning Salesforce Einstein
- 量化金融R語(yǔ)言高級(jí)教程
- C++從入門(mén)到精通(第5版)
- Tableau 10 Bootcamp
- Processing創(chuàng)意編程指南
- Android Development Tools for Eclipse
- 愛(ài)上C語(yǔ)言:C KISS
- ASP.NET開(kāi)發(fā)寶典
- Spring Boot 3:入門(mén)與應(yīng)用實(shí)戰(zhàn)
- Developer,Advocate!
- Learning NHibernate 4
- SQL Server 2014數(shù)據(jù)庫(kù)設(shè)計(jì)與開(kāi)發(fā)教程(微課版)
- Python AI游戲編程入門(mén):基于Pygame和PyTorch
- Scratch 3.0少兒積木式編程(6~10歲)
- Flink原理深入與編程實(shí)戰(zhàn):Scala+Java(微課視頻版)
- Cadence Concept-HDL & Allegro原理圖與電路板設(shè)計(jì)(第2版)
- 軟件工程實(shí)用教程
- 軟件測(cè)試技術(shù)實(shí)戰(zhàn):設(shè)計(jì)、工具及管理
- Erlang編程指南
- 架構(gòu)真意:企業(yè)級(jí)應(yīng)用架構(gòu)設(shè)計(jì)方法論與實(shí)踐
- Kivy:Interactive Applications and Games in Python(Second Edition)
- Mastering Apache Spark
- R的極客理想:高級(jí)開(kāi)發(fā)篇
- 代碼質(zhì)量
- 重構(gòu)與模式(修訂版)