- Neural Networks with R
- Giuseppe Ciaburro Balaji Venkateswaran
- 59字
- 2021-08-20 10:25:17
Linear function
The simplest activation function, one that is commonly used for the output layer activation function in neural network problems, is the linear activation function represented by the following formula:

The output is same as the input and the function is defined in the range (-infinity, +infinity). In the following figure, a linear activation function is shown:

推薦閱讀
- Visual FoxPro程序設(shè)計(jì)教程(第3版)
- Vue.js快速入門與深入實(shí)戰(zhàn)
- Clojure for Domain:specific Languages
- INSTANT MinGW Starter
- Java:High-Performance Apps with Java 9
- Clojure High Performance Programming(Second Edition)
- AI自動(dòng)化測(cè)試:技術(shù)原理、平臺(tái)搭建與工程實(shí)踐
- 你真的會(huì)寫代碼嗎
- JavaEE架構(gòu)與程序設(shè)計(jì)
- Mapping with ArcGIS Pro
- C語(yǔ)言從入門到精通(視頻實(shí)戰(zhàn)版)
- Magento 2 Developer's Guide
- Windows 10 for Enterprise Administrators
- Switching to Angular 2
- 小小的Python編程故事