舉報

會員
Machine Learning for Healthcare Analytics Projects
MachineLearning(ML)haschangedthewayorganizationsandindividualsusedatatoimprovetheefficiencyofasystem.MLalgorithmsallowstrategiststodealwithavarietyofstructured,unstructured,andsemi-structureddata.MachineLearningforHealthcareAnalyticsProjectsispackedwithnewapproachesandmethodologiesforcreatingpowerfulsolutionsforhealthcareanalytics.ThisbookwillteachyouhowtoimplementkeymachinelearningalgorithmsandwalkyouthroughtheirusecasesbyemployingarangeoflibrariesfromthePythonecosystem.Youwillbuildfiveend-to-endprojectstoevaluatetheefficiencyofArtificialIntelligence(AI)applicationsforcarryingoutsimple-to-complexhealthcareanalyticstasks.Witheachproject,youwillgainnewinsights,whichwillthenhelpyouhandlehealthcaredataefficiently.Asyoumakeyourwaythroughthebook,youwilluseMLtodetectcancerinasetofpatientsusingsupportvectormachines(SVMs)andk-Nearestneighbors(KNN)models.Inthefinalchapters,youwillcreateadeepneuralnetworkinKerastopredicttheonsetofdiabetesinahugedatasetofpatients.Youwillalsolearnhowtopredictheartdiseasesusingneuralnetworks.Bytheendofthisbook,youwillhavelearnedhowtoaddresslong-standingchallenges,providespecializedsolutionsforhowtodealwiththem,andcarryoutarangeofcognitivetasksinthehealthcaredomain.
目錄(66章)
倒序
- coverpage
- Title Page
- About Packt
- Why subscribe?
- Packt.com
- Contributor
- About the author
- Packt is searching for authors like you
- Preface
- Who this book is for
- What this book covers
- To get the most out of this book
- Download the example code files
- Download the color images
- Conventions used
- Get in touch
- Reviews
- Breast Cancer Detection
- Objective of this project
- Detecting breast cancer with SVM and KNN models
- Data visualization with machine learning
- Relationships between variables
- Understanding machine learning algorithms
- Training models
- Predictions in machine learning
- Summary
- Diabetes Onset Detection
- Detecting diabetes using a grid search
- Introduction to the dataset
- Preprocessing the dataset
- Normalizing the dataset
- Building our Keras model
- Performing a grid search using scikit-learn
- Reducing overfitting using dropout regularization
- Finding the optimal hyperparameters
- Optimizing the number of neurons
- Generating predictions using optimal hyperparameters
- Bonus step
- Summary
- DNA Classification
- Classifying DNA sequences
- Data preprocessing
- Generating a DNA sequence
- Splitting the dataset
- Summary
- Diagnosing Coronary Artery Disease
- The dataset
- Fixing missing data
- Splitting the dataset
- Training the neural network
- A comparison of categorical and binary problems
- Summary
- Autism Screening with Machine Learning
- ASD screening using machine learning
- Introducing the dataset
- Importing the data and libraries
- Exploring the dataset
- Data preprocessing
- One-hot encoding
- Splitting the dataset into training and testing datasets
- Building the network
- Testing the network
- Solving overfitting issues using dropout regularization
- Summary
- Another Book You May Enjoy
- Leave a review - let other readers know what you think 更新時間:2021-06-24 18:21:51
推薦閱讀
- Managing Mission:Critical Domains and DNS
- Natural Language Processing Fundamentals
- 樂高機器人EV3設計指南:創造者的搭建邏輯
- 手把手教你學AutoCAD 2010
- JSF2和RichFaces4使用指南
- Implementing Oracle API Platform Cloud Service
- ASP.NET 2.0 Web開發入門指南
- 手把手教你學Photoshop CS3
- 中國戰略性新興產業研究與發展·數控系統
- PyTorch深度學習
- Flash CS5二維動畫設計與制作
- x86/x64體系探索及編程
- Getting Started with Tableau 2019.2
- Hands-On Generative Adversarial Networks with Keras
- 工廠電氣控制設備
- 網絡規劃與設計
- 探索中國物聯網之路
- 計算機導論:實訓篇(第2版)
- 人工智能時代移動學習服務
- 人工智能算法(卷2):受大自然啟發的算法
- 無線傳感器網絡技術及應用
- 巧學活用Excel
- 智能運維之道:基于AI技術的應用實踐
- Selenium測試實踐
- OpenGL 4 Shading Language Cookbook(Second Edition)
- 新編計算機導論(第2版)
- 動態網頁制作
- 第十三屆中國智能交通年會優秀論文集
- 西門子S7-1200 PLC編程從入門到實戰
- Selenium Fundamentals